A CONTAINER LIBRARY FOR C

Jacob Navia

single linked
double linked

list

general vector

vector -~

Sequential

string collection
bitstrings

ueue

Contai stream
ontainers
buffers <circu|ar
hash tables
Associative

dictionary

Probabilistic bloom filter

Contents

1

2

Introduction 13
1.1 Containers e 14
1.2 The interface concept 15
1.3 Error handling 15
1.4 The different containerso 16
1.4.1 Single and double linked lists 17
1.4.2 Flexible arrays (vector) 17
1.4.3 String collection Lo 18
1.4.4 Bit-stringo 18
1.4.5 Dictionaryo 18
1.4.6 Hash Table 18
1.4.7 AVL trees 18
1.4.8 “Scapegoat” treeso 18
149 Bloom Filter. 19
1.4.10 Queue 19
1.4.11 Deque 19
1.4.12 Buffers e 19
1.5 Types used by the library 19
1.5.1 Comparelnfo 19
1.5.2 CompareFunction 20
1.5.3 SaveFunction 20
1.5.4 ReadFunction, 20
1.5.5 ErrorFunction 20
1.5.6 DestructorFunction 20
1.6 Design goals 21
1.6.1 Error analysis 21
1.6.2 Full featureset 22
1.6.3 Abstraction 22
1.6.4 Performance 23
1.7 How the functions are specified in this document. 23
The common vocabulary: iGenericContainer 25
2.1 Creation of a container: Create 26
2.2 Destruction of a container: Clear and Finalize 26

CONTENTS

2.2.1 Other creation functions 26

2.3 Adding an element to a container: Add and AddRange 27
2.4 Removing an element from a container: Erase 28
2.5 Retrieving an element from a container: GetElement 28
2.6 Sorting a sequential container: Sort 28
2.7 Copying a container: Copy 28
2.8 Saving and loading a container to or from disk: Save and Load 29
2.9 Inserting a container into another: InsertIn 29
2.9.1 Sequential containerso 29
2.9.2 Associative containers 29

2.10 Replace an element with another 29
2.10.1 Sequential containers: ReplaceAt 29
2.10.2 Associative containers: Replace 29

2.11 Looping through all elements of a container 30
2.11.1 Using a simple loop to iterate a container 30
2.11.2 Using the “Apply” function. 31
2.11.3 Using iteratorso 31

2.12 Setting and retrieving the state: GetFlags and SetFlags 32
2.13 Retrieving the number of elements stored: Size 32
2.14 Space used: Sizeof 32
2.15 Memory management Lo 33
2.15.1 Memory manager objects 33
2.15.2 Pooled memory management 34
2.15.3 Heap of same size objects 34

3 The auxiliary interfaces 35
3.1 Memory management Lo 35
3.1.1 The traditional memory manager 35
3.1.2 The Heap interface: iHeap 36
Create 37

InitHeap 37

newObject L 37
AddToFreeList 37
DestroyFreeList oL 38

Finalize 38

Sizeof 38

3.2 Pooled memory interface: iPoolo 39
Create 39

Alloc o 39

Calloc o 40

Clear 40

Finalize 40

3.3 Error handling Interface: iError 40
RaiseError 41

Contents

EmptyErrorFunction00 41
StrError 41
SetErrorFunction 41

3.4 The iterator interface 41
3.4.1 Theinterface 42
GetCurrent 42
GetFirst 42
GetNext 43
GetPrevious 43
GetCurrent 44
GetLast 44

4 The containers 45
4.1 The List interfaces: ilist, iDlist 45
4.1.1 General remarks 47
Add . .. 48
AddRange 49
Append L 50

Apply . . 51

Clear s 52
Contains 52

CopY .« o 52
CopyElement oL 53
Create e 53
CreateWithAllocator 54
deletelterator 54

Equal 55

Erase 55
EraseAt 55
EraseRangeo 56
Finalize 57
GetAllocator 57
GetElementSize 57
GetElement 57
GetFlags / SetFlags 58
GetRange 58
IndexOf 59

Imit e 59
InitWithAllocator 59
InsertAt 60
InsertIn 60

Load 62
newlteratoro 62
PopFront 62

CONTENTS

4.2

4.3

PushFront 63
ReplaceAt 63
Reverse 64
Seek . . e 64
SaVe . . 65
SetCompareFunction 65
SetAllocator 65
SetDestructor 66
SetErrorFunction 66
SIZE . . e 66
Sizeof s 66
SOrt . .o 67
UseHeap 67
Double linked lists: iDlist 68
PopBack 70
Splice 71
The Vector interface: iVector 72
4.3.1 Theinterface 73
432 The API 74
Add . .. 74
AddRange 74
Append 75
Apply . . 75
Clear e 76
Contains e 76
Copy . - o 7
Create s 77
CreateWithAllocator 7
Contains e 78
CopyTo o 78
deletelterator 78
Equal 78
Erase 79
EraseAt 79
Finalize 80
GetCapacity 80
GetElementSize 80
GetElement 80
GetFlags / SetFlags 81
GetRange 81
IndexIn 82
IndexOf 82
InsertAt 82
InsertIn 83

Contents

Load 84
newlterator 84
Mismatch 85
PopBack 85
ReplaceAt 86
Reverse 86

SAVE . .o 86
SetCapacity 87
SetCompareFunction 87
SetDestructor 87
SetErrorFunction 88

Size . .o 88

Sizeof 88

SOrt ..o 88

4.4 The bit-string container: iBitString 90
4.4.1 Theinterface 91
4.4.2 API 92
Add . . . o 92

And . .. 93
AndAssign 94
BitBlockCount 95
CopyBits 96
GetBits 96
GetRangeo 96
LeftShift 96

Not 97
NotAssign 97
ObjectToBitString 97

Or . e 97
OrAssign 98
PopulationCount 98

Print 98
Reverse 98
RemoveAt 99

Set . .. 100
StringToBitString oL 100

XOT . o v o e e 100
XorAssigno 101

4.5 The string collection container: iStringCollection 102
4.5.1 Theinterface 102
4.5.2 APL . . . 103
AddRange 103
CastToArray 104
CreateFromFile L 104

CONTENTS

FindFirstText 104
FindNextText 104
FindTextPositions, 105

Imit e 105
InitWithAllocator 105
InsertIno 105
Mismatch 107
PopBack 108
WriteToFile 108

4.6 The dictionary container: iDictionary 109
4.6.1 The dictionary interface 110
4.6.2 The API 111
Add ... 111

Apply . . o 111

Clear e 112
Contains s 113

CopY .« « o e 113

Create 113
deletelterator 113

Equal 114

Erase 114
Finalize o 114
GetElementSize 115
GetElement 115

Inmit e 116
InitWithAllocator 116

Insert 116

Load 116
newlterator 117
SetDestructor e 117

SIZE . . e 117

SaVE . . s 118

Sizeof 118
SetErrorFunction 118

SIZE . . e 119

4.7 The TreeMap interface: iTreeMap 120
The comparison function must be consistent 120

471 Theinterface 120
4.8 Hash Table: iHashTable 122
4.8.1 Theinterfaceo 122
48.2 The API 123
Add ... 123

Apply . . o 124

Clear 125

Contents

COoPY « « o o 125
Create 125
deletelteratoro 125

Eraseo 125
GetElement 126
GetFlags 126

Load 126

Merge 126
newlterator 127
Overlay 128
Resize e 128
Replace 128

Save ... 128
SetErrorFunction 129

SIZEe . . 129

Sizeof e 129

4.9 Queues: iQueue 130
4.9.1 Interface 130
49.2 The API 130
Front 131

Back 131
GetList 131

4.10 Deque: iDeque 131
4.10.1 Interface 132
Apply . . o 133

Back 133

Clear s 133
Contains 133

Copy .« o 133
Create s 134

Equal 134

Front 134

Erase 134
Finalize 135
GetFlags 135

Load e 135
PopBacko 136
PopFront 136
PushBack 136
PushFront 136

Save ..o e 137

4.11 Bloom filters 138
4.11.1 The interface: iBloomFilter 138
4.11.2 The API 139

CONTENTS

10

4.12 Buffers
4.12.1

4.12.2

CalculateSpace
Create
Add . . .

Stream buffers

The interface
The API

Create s
CreateWithAllocator
Finalize o
GetData
GetPosition
Read

SIZe .

The interface: iCircularBuffer
The API
Add ...
Clear s
CreateWithAllocator
Create
Finalize o
PeekFront
PopFront
SIZE . . e
Sizeof

4.13 The generic interfaces Lo

4.13.1
4.13.2
4.13.3

Generic containers
Sequential containers
Associative containers

Enhancing the library

Applications

6.1 Mapcar

The sample implementation
7.1 Data structures

153

155
155

159

Contents

7.1.1 The generic part oL 159

712 Lists 160

7.1.3 Double linked lists 161

7.1.4 Vector 162

7.1.5 Dictionary 163

7.1.6 String collection 163

7.1.7 The iterator data structure 164

7.2 Thecode. 165
721 List ..o 165

722 QuUeues 195

7.2.3 The dictionary 197
Hashing 198

Creation 199

Adding elements 200

Implementing iterators L. 202

7.2.4 The bloom filtero 203
Debugging malloc oo 204

8 Building generic components 207
Index 213

11

1 Introduction

The objective of this proposal is to standardize the usage of common data structures
within the context of the C language. The existence of a common standard interface for
lists, hash tables, flexible arrays, and other containers has several advantages:

e User code remains portable across machines and operating systems

e The portable specifications provide a common framework for library writers and
compiler/system designers to build compatible yet strongly specialized implemen-
tations.

e The language becomes more expressive: it is not necessary to build the nth hash
table function from scratch. You can use a standard one.

The big innovation of C in the eighties was its standard library, that made input/output
portable across machines and implementations. The container library would replicate
again that idea, at a higher level.

The specifications presented here are completely scoped by the C99 specifications,
and can be implemented even in compilers that do not implement C99 and stayed within
the C94 context. No language extensions are needed nor any are proposed.

The interfaces proposed try to present complete packages, i.e. interfaces with all
the necessary functions to allow the widest usage: Serialization, searching, and many
other functionalities are included in the proposed standard to allow for maximum code
portability. It can be argued that this makes for ”fat” containers, but if you read
carefully you will notice that many things can be left out in systems that run in low
memory or with feeble computing power.

This documentation is composed of several parts:

1. An introductory part where the general lines of the library are explained.

2. A specifications part where each function of the library is fully specified. This is
the proposal for the next C standard.

3. An "examples” part that shows the uses of the library and allows you to have a
better idea of how the usage of the library looks like.

4. An implementation part where the code of the sample implementation is discussed.
This is designed as a guide for implementors to give them a basis to start with.

13

1.1

1. INTRODUCTION

Containers

In the context of this library, a container is a data structure used to organize data within
a single logical object that allows for adding, searching and removing data. The data
is not further specified. It can be anything, images, numbers, text, whatever. The only
thing that the container knows is the size of the data, if we store a series of objects of
the same size, or its address, if we store objects of different sizes. In the later case we
store just a pointer in the container. Each container has a way of iterating through all
its elements by using an “iterator” auxiliary object, that returns each stored object in
sequence.

All objects stored by the library are copied into the library, and the library is re-
sponsible for the management of the associated storage. If you do not want this, just
store a pointer to the data and manage the data yourself.

We have basically two different kinds of containers

e 1. Sequential containers
e 2. Associative containers

A sequential container is organized in a linear order. We have a sequence starting at
index zero up to the number of elements stored. Data items can be retrieved by index,
and it makes sense to speak of a “next” and a “previous” element.

Sequential containers can be contiguous (arrays) or disjoint (lists). In the first case
access is very fast since it implies multiplying the index by the size of each element to
get to any position in the data. In the second case access the nth element can be a
lengthy operation since the chain of “next” or “previous” pointers must be followed for
each access to a given position.

An associative container stores an object divided in two parts: a key, that is used as
a token for the data, and the data itself. It associates key/value pairs. Speed of access
is fast, but not linear, and can degrade as new items are stored in it.

In all cases, we have some basic properties of an abstract container that are common
to all of them.

e A function to report errors. This function (like all other function pointers) can
be changed, and defaults to a simple error function that prints the error in the
standard error stream.

e FEach change in a container is recorded. This permits to validate pointers to a
container: if the container has changed after the creation of the pointer, the pointer
could be invalid.

e All containers use a standard object to allocate and manage memory. The library
povides a default allocator that contains the standard C functions malloc, free,
realloc and calloc. Each container class can contain an allocator pointer, or each
container can contain an allocator. The provided sample implementation has a
per container allocator, but in many applications a per class allocator could be
enough, or even a single global allocator that would be used by the whole library.

14

1.2

1.3

1.2. The interface concept

Managing a sequence involves trade offs what performance is concerned. If the usage
will involve frequent insertion and deletion of objects you will prefer a container that
handles those operations in constant time: the time to add or delete an object doesn’t
increase with the number of elements in the container. Such a container will be unlikely
to provide also access to a given element in constant time. Access is likely to be much
slower, and what you gain in flexibility you loose in another dimension. It is the user of
the library, the programmer, that decides what container fits best the intended usage.

Since usage patterns change, however, the library tries to ensure that you can change
the container you are using with minimal effort. If at the beginning of an application
a list looked like a good solution but later an array, that provides constant time access
is better suited, you can change the type of container without changing every line that
uses it. The common vocabulary of the library makes this possible.

The interface concept

Each container is defined by its interface, i.e. the table of functions it supports. For
each interface, its name is composed of a lower case “i” followed by the container name:
iList, iVector, iStringCollection, etc.

Each function of the interface receives always the container as its first argument.
Obviously, the big exception is the creation function, that receives various arguments
depending of which container or from what input, the container is to be created.

For each container interface a global object exists that allows direct access to the
function table without the need of creating a container to access it.

This interface allows for simple access to each container using a very similar vocab-

ulary:

iList.Add(1list,object);
iStringCollection.Add(strcol,object);

The objects stored in a container have always the same size. When storing objects of
different sizes just store a pointer to the objects, since pointers have always the same
size.

Error handling

This specification describes the basic error handling that each function of the library
must do. Other errors can appear in different implementations. At each error, the
library should call the container instance specific error handling when there is one, or
call the general error handling function in the iError interface. When it is not possible
to call the instance specific error function, for instance when the instance parameter is
NULL , the library calls the general error handling function in the iError interface?.

IThere is no automatic cleanup of objects left by active functions in the stack. This can be a
problem or not, depending if your use a garbage collection or not. If you use a garbage collector, this

15

1.4

1. INTRODUCTION

The user of the library can either replace the default iError interface with a function
that handles the error with a jump to a previously set recovery point, or treat the error
locally using the return code. All errors are negative constants, it suffices to test if the
result is less than zero.

The error codes defined by this specification are:

e CONTAINER_ERROR_BADARG One of the parameters passed to a function is in-
valid.

e CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the
operation.

e CONTAINER_ERROR.INDEX The index is out of bounds.

e CONTAINER_ERROR_READONLY The object is readonly and the operation is not
allowed.

e CONTAINER_ERROR_INTERNAL Unspecified error provoked by a problem in the
implementation.

e CONTAINER_ERROR_OBJECT_-CHANGED A change in the underlying object has
invalidated an iterator.

e CONTAINER_ERROR_NOT_EMPTY Operation can be performed in an object with
no elements only.

e CONTAINER_ERROR_FILE_READ Input error in a stream.
e CONTAINER_ERROR_FILE WRITE Output error in a stream.

e CONTAINER_ERROR_CONTAINER FULL Implementations can limit the maximum
number of elements a container can hold. This error indicates that the limit is
reached.

Other errors can be defined by each implementation.
The treatment of each error is done in the object defined by the iError interface.

The different containers

All data structures in this section are known and used for several decades. Lists are a
common feature of any data processing task since the sixties for instance. The library
provides for abstract containers, and some examples of concrete ones for the elementary
types. We have:

problem doesn’t even appear: the unused objects will be automatically collected. If you don’t, you
should test for the return code of each function.

16

141

1.4.2

1.4. The different containers

e Vectors. The general abstract vector container is implemented in the “Vector”
container. This is a flexible array that allows for insertion/deletions, with no cost
for insertion at the end in most cases. Concrete implementations for the elementary
types are provided for bits (bit-strings), strings (null terminated), int/double/long
double numeric data in the form of templates.

e Lists. Single linked lists (List) and double linked lists (Dlist) are provided.

e Queue, Deque

e Trees (red/black trees, AVL trees)

e Dictionary. This is a simple implementation of a hash table with character keys.

e Hash Table. More complex implementation of a hash table with arbitrary (binary)
keys, and automatic hash table resizing.

e Buffers. Stream buffers (linear buffers that resize to accomodate more data) and
circular buffers are provided.

Single and double linked lists

This containers consist of a header and a list of elements containing each a pointer to
the next element in the chain, and a pointer to the data item stored. The end of the list
is marked by a node that contains a NULL “next” pointer. Double linked lists contain
an additional pointer to the previous element.

This is a very flexible container, allowing you to add and delete elements easily just
by rewriting some pointers. You can even split them in two sublists just by zeroing
somewhere the “next” pointer.

The price you pay for this flexibility is that sequential access is expensive, the cost
of accessing the nth element increases linearly with n.

Storage overhead is one or two pointers per element stored in the list for single/double
linked lists..

The data is stored directly after the pointer, there is no pointer to the data. This is a
variable length structure with a fixed and a variable part. To avoid using a standard C99
feature that could be absent in older compilers, we use a semi-generic pointer indexed
either by one (for older compilers) or by nothing (standard C) .

Flexible arrays (vector)

This container is an array with added operations that allow the user to insert and delete
elements easily. It will resize itself if needed.

The access time is essentially the same as with a normal array. Insertion and deletion
are possible but they are in general more expensive than with lists since the container
must copy the elements to make place for a new element or to delete an element. An

17

1.4.3

144

145

1.4.6

1.47

1438

1. INTRODUCTION

exception to this rule is the deletion of the last element that will be done in constant
time since it implies only decrementing the number of elements in the container.

The storage overhead for each element is zero since this container doesn’t require
any pointers per object stored.

This container uses a reserve storage to avoid allocating new memory for each addi-
tion operation. This allows the “Add” operation to be done in constant time in most
occasions.

String collection

This container is designed to handle a collection of C strings. It is essentially an appli-
cation of the flexible array container with some extra functionality to handle strings.

Bit-string

This container is designed to handle arbitrary sequences of bits. Some algorithms that
are easy to program with strings are much more complicated for bit-strings, like to one
that mimics "strstr” (”bit-strstr”).

The bits are packed with 8 bits per character unit. The overhead per bit is the size
of the bit-string header only. No pointers are associated with each bit.

Dictionary

This is an associative container based on a hash table. It associates a text key with some
arbitrary data. This container is not ordered. Access time to each element depends on
how much elements are stored in it and on the efficacy of the hash function to maintain
elements in different slots. Storage overhead per element is one pointer each, plus the
size of the slot table. This is for a hash table with linked lists in each slot for managing
collisions. Other implementations exist of course.

Hash Table

This is a more sophisticated version of the dictionary hash table. It allows for keys of
binary data and it has automatic resizing in case the table gets too crowded.

AVL trees

This data structure allows for fast searching for data. You can store millions of records
and find a given record with a few comparisons.

“Scapegoat” trees

This is another form of trees. They can be more efficient than AVL trees, but from a
container perspective they share the same characteristics.

18

149

1.4.10

1.4.11

1.4.12

1.5

151

1.5. Types used by the library

Bloom Filter

This is a probabilistic data structure used to quickly check if an element is not in a larger
set of elements. It returns false positives with a given probability set when the container
is built. Elements can be added to it but they can’t be removed from the container. It
stores no data, just a key.

Queue

Queues are designed to operate in a FIFO context (first-in first-out), where elements
are inserted into one end of the container and extracted from the other. This container
can be implemented as an adaptor using a single linked list as its base container. The
sample implementation uses this strategy to show how adapters can look like. Other
implementations can implement this container directly presenting the same interface.

Deque

This is a linear container that allows for cheap insertions/deletions at both ends.

Buffers

Buffers are containers used to hold data temporarily, either to be transmitted or stored
into some medium, or to be filtered and used later by other parts of the application.
The library provides two types of buffers:

e Stream buffers. They are a linear sequence of bytes, like a file. They resize
automatically if they need to, and they have a cursor that points to the position
where the next item will be stored.

e Circular buffers. They store the last n items of a stream. They can contain any
item as in the vector container, or they can contain character strings, as in the
string collection.

Types used by the library

Comparelnfo

typedef struct tagComparelnfo {
void *ExtraArgs;
void *Container;

} Comparelnfo;

This structure will be passed to the comparison functions. The “ExtraArgs” pointer will
receive the pointer that was passed to the calling function. The “Object” pointer will
receive the address of the container where the elements are stored. If the two elements
being compared are in different containers, this pointer will be NULL .

19

1.5.2

1.5.3

154

155

1.5.6

1. INTRODUCTION

CompareFunction

typedef int (*CompareFunction) (const void *eleml,
const void *elem2,
ComparelInfo *ExtraArgs);

This type defines the function used to compare two elements. The result should be less
than zero if elem1 is less than elem2, zero if they are equal, and bigger than zero if elem1
is bigger than element 2.

SaveFunction

typedef int (*SaveFunction) (const void *element,
void *ExtraArg,
FILE *QutputStream);

This function should save the given element into the given stream. The “ExtraArg”
argument receives the address of the container and any argument passed to the Save
function. The result should be bigger than zero if the operation completed successfully,
zero or less than zero otherwise.

ReadFunction

typedef int (*ReadFunction) (void *element,
void *arg,
FILE *InputStream) ;

This function should read into the given element from the given stream. The “ExtraArg”
argument is passed to the container Save function and allows to pass an argument to
the user defined save function. The result should be bigger than zero if the operation
completed successfully, zero or less than zero otherwise.

ErrorFunction

typedef void (*ErrorFunction) (const char *functionName,int code);

This function type is used to handle errors in each container. The first argument is the
function name where the error occurred, the second is a negative error code.

DestructorFunction

typedef int (*DestructorFunction) (void *object);

This function type is called when an object is being destroyed from the container. An
object is destroyed when:

20

1.6
1.6.1

1.6. Design goals

e An Erase call is done.
e A Replace call is done.
e The Clear call is done.

This function should free any memory used by pointers within the object without
freeing the object memory itself. In most cases the memory used by the library is not
allocated with malloc. Its result type is less than zero when an error occurred or greater
than zero when it finished successfully.

Design goals

Error analysis

It has been a tradition in C to place raw performance as the most important quality
of specifications. To follow this sacred cow C specifications ignored any error analysis
arguing that any specification of failure modes would damage ”performance”. No matter
that raw machine performance increased by several orders of magnitude, the cost of a
check for NULL was always "too expensive” to afford.

This kind of mental framework was described by one of the people in the discussion
group ”comp.lang.c++" as follows:?

In C++, the program is responsible for ensuring that all parameters to
the standard library functions are valid, not only the third parameter of
std: :mismatch(). For example, also the first range for std:mismatch()
must be valid, one may not pass a start iterator from one container and end
iterator from another, for example. However, STL does not guarantee any
protection against such errors, this is just UB.

This specifications try to break away from that frame of thought. Each function specifies
a minimal subset of failure modes as a consequence of its error analysis. This is allows
user code to:

e Detect and handle errors better.

e Ensure that errors will always have the same consequences. One of the worst
consequences of undefined behavior is that the same error can have completely
different consequences depending on apparently random factors like previous con-
tents of memory or previous allocation pattern.

2We were discussing the specifications of the mismatach function of the C++ STL and why any
error analysis is absent. The C++ STL prescribes a bounded region for the first container, but just a
starting point for the second one. If the second is shorter than the specified range of the first undefined
behavior ensues and anything can happen. In many cases this "anything” is different each time the
same error occurs. In our specific case mismatch would read from memory that doesn’t belong to the
container it started with. Depending on the contents of that memory a crash could happen, or worst,
a wrong result returned to the calling software, etc.

21

1.6.2

1.6.3

1. INTRODUCTION

At the same time, the mandatory error checking consists mainly of checks that can
be implemented with a few integer comparisons. For instance a check for zero is a single
instruction in most processors. If implemented correctly the conditional jump after the
comparison with zero is not taken in the normal case and correctly predicted by the
processor. This means that the pipeline is not disturbed and the cost for the whole
operation is much less than a cycle.

Why is error analysis an essential part of any program specifications?

Because mistakes are a fact of life. Good programmers are good most of the time
only. Even very good programmers do make mistakes®. Software must be prepared to
cope with this fact in an orderly fashion because if failure modes are not specified they
have catastrophic consequences and lead to brittle software that crashes randomly.

Note that error analysis is not error handling. Error handling is taking an action after
an error, a task only the application can do. What the library can do is to establish a
framework where a user defined procedure receives enough information about the specific
problem at hand.

Error analysis means that for each function and each API:

e An analysis is performed of what are the consequences of any error in its inputs.
Error codes are used to pass detailed error information to the error procedure.

e During its execution, an analysis is done of each step that can fail.

e The outputs of the function are left in a consistent state, errors provoking the
undo of the previous steps in most cases, leaving the inputs as they were before
the function was called. This feature allows library functions to be restartable
after an error. For instance an out of memory condition can be corrected by
freeing memory and retrying.

The library provides hooks for the users that can control each step and provide functions
that can do the error handling, for instance logging the error and jumping to a pre-
established recovery point.

Full feature set

Another design goal is to offer to the user a full feature set, complete with serializing,
iterators, search, read-only containers and all the features needed in most situations.
Other features are planned for later (observers, multi-threading support).

Abstraction

The library is designed with the possibility of implementing abstraction like serial and
associative containers that allow software to treat several containers in a way that ab-

3Donald Knuth, the author of the TeX typesetting program can be without doubt be qualified as a
good programmer (and an excellent computer scientist). But he, like anybody else, is not without flaws.
See: www.tug.org/texmf-dist/doc/generic/knuth/errata/errorlog.pdf. There are hundreds of entries in
that log.

22

1.6.4

1.7

1.7. How the functions are specified in this document.

stract most of their features, improving code reuse by allowing to implement algorithms
for a class of objects. This is specially true in the iterators feature.

It can be argued that the C language lacks many of the abstractions constructs of
other languages like templates, inheritance, and many others. All that is true, but the
objective of this proposal is to show that those constructs are just an aid to developing
abstractions, an aid that is paid in added complexity for the resulting language, and
in a limitation of what is feasible within a given framework. Since C has no frame-
work, no preferred inheritance model, it is possible to create abstractions that are quite
unconstrained: there is no framework precisely.

Performance

Even with all the tests, the performance of the library has been maintained at a high
level compared to similar libraries in other languages. The performance should improve
if standardized because compiler writers could specialize their optimizations targeting
this code.

How the functions are specified in this document.

The specifications part of the proposal uses the same building blocks for each of the
functions proposed.

Name

The name of the function. Note that when using this name, the container interface
should be always before: iList.Add, iDictionary.Add, etc.

The name is followed by the prototype defined as a function pointer. For the func-
tion” Add” of the container “List” we have

int (*%Add) (List *1list,void *data);

This means that “Add” is a function pointer in the interface iList. It would be used as:
iList.Add(list,data).

Errors:

The minimal set of errors that can appear during the execution of the function is listed.
Each implementation is free to add implementation specific errors to this list. Note that
how the library behaves after an error is defined by the current error function in the
container (if any), then by the behavior of the error function in the iError interface.
This can be changed by the user by using the iError interface.

Returns: The return value of the operation. Normally, negative values are error codes,
positive values means success, and zero means non fatal errors, more in the sense of a
warning.

23

2

The common vocabulary: iGenericContainer

Create/CreateWithAllocator

Life cycle

Init/InitWithAllocator

Clear

!

Finalize

Managing Add

elements

Retrieving GetElement Associative GetKeys
data Copy Containers
/ / Append
Sequential | Pop
Container Containers J | 1o of
Vocabulary Size
Queries

Sizeof
GetFlags
SetFlags

newlterator
GetFirst

GetNext
GetCurrent

GetPrevious

Insertln

Iterators

Looping

Serializin deletelterator

i

InsertAt
EraseAt

ReEIaceAt
Sor

LT

GetRange

AddRange

Auxiliary

SetErrorFunction
functions

SetDestructor

<

The library uses always the same words to represent similar

SetCompareFunction

25

LPush

actions in all containers.

2.1

2.2

2.2.1

2. THE COMMON VOCABULARY: IGENERICCONTAINER

Creation of a container: Create

Containers are created with a call to their “Create” function. The first argument is the
size of the objects that will be stored in the container. The second is optional and is a
hint to the number of elements that will be stored in the container. Note that if you
want to store objects of different sizes you just store a pointer to those objects instead
of the objects themselves. The creation functions can have several arguments, the first
being always the size of the elements that the container will hold. The prototype can
be:

Container * iContainer.Create(size_t elementsize,...);

The creation function needs to allocate memory to hold the container. This memory
will be allocated using the current memory manager that is always an implicit argument
to all creation functions. The rationale behind this design decision is that you don’t
change your memory allocation strategy at each call to a container creation function.
This simplifies the interface at the expense of making the change of allocation strategy
more expensive.

Destruction of a container: Clear and Finalize

All containers support two cleanup functions:

1. Clear: remove all elements. The header structure remains untouched. This can be
used to free the memory when the container was created with the Init function.

2. Finalize: Remove all elements and the memory used by the container object using
the allocator for this container. The container should NOT have been created
using the Init function.

The syntax is:
1. int iContainer.Clear(Container *);
2. int iContainer.Finalize(Container *);
The result of those functions is less than zero when something goes wrong, greater than

zero otherwise.

Other creation functions

1. An implicit argument to all the creation functions is the current allocator, that is
used to retrieve space for the container being built. To avoid changing the current
allocator, what in multi-threaded environment would need acquiring a lock to that
global variable, some containers support a creation function that receives an extra
argument: a custom allocator.

26

2.3

2.3. Adding an element to a container: Add and AddRange

Container * iContainer.CreateWithAllocator(size_t elementsize,
ContainerMemoryManager *allocator, ...);

2. Sometimes it can be useful for some containers (specially lists) to create the header
structure using an already existing space, for instance in the space for local vari-
ables. For this an ’'Init’ function can exist, that initializes a container within an
existing space. Since normally the detailed structure (and the size of course) of
each container header is implementation dependent, you use the Sizeof function
with an argument of NULL to get the size of the header. This can be used within
a C99 compiler environment to allocate the space for that variable. ! The decla-
ration of the container header in C99 would be:

int function(void)

{
char listSpace[ilist.Sizeof (NULL)];
iList.Init(listSpace);

If C99 is not available, the best way is to just print the size of the container you are
interested in, and then use that value that should stay fixed for a given version.
This can be automated and you can find in the Appendix 1, a small program
that generates a series of #defines with the values of the sizes of the containers
described in this documentation.

Adding an element to a container: Add and AddRange

This operation adds the given element to a container. In sequential containers it is added
at the end, in associative containers it is added at an unspecified position.

int iContainer.Add(Container *, void *element);
The result of this operation is a positive integer if success, or an error code less than
zero if the operation fails.

Sequential containers support also the AddRange API:

int iContainer.AddRange(Container *,size_t n, void element[]);

This API allows you to pass a table of elements into a sequential container and add it
with a single call.

IThis incredibly useful feature has been made now optional by the C99 committee, even if it was
mandatory when the C99 standard was published.

27

2.4

2.5

2.6

2.7

2. THE COMMON VOCABULARY: IGENERICCONTAINER

Removing an element from a container: Erase

Removes the given element from the container. The result is an integer greater or equal
to zero with the number of elements in the container after the remove operation, or an
error code less than zero if the element couldn’t be added.

int iContainer.Erase(Container *,void *element);

This function needs to search for the given element before erasing it. For sequential
containers you can use the “RemoveAt” function, that will remove a container at a
given position.

int iContainer.EraseAt(Container *,size_t idx);
For associative containers you use RemoveKey:

int iContainer.RemoveKey(Container *,void *Key);

Retrieving an element from a container: GetElement

The GetElement function retrieves an element from a container. It comes in two different
flavors, one for sequential containers, and another for associative ones.

void *iContainer.GetElement(Container *,size_t index);
void *iContainer.GetElement (Container *,void *Key);

These functions return a pointer to the requested element or NULL if the element can’t
be retrieved. The resulting pointer points directly to the data stored in the container.
This could be used to bypass all the flags that control the access to the container. For
read-only containers, use the CopyElement function that returns a copy of the requested
data into a buffer.

Sorting a sequential container: Sort

The “Sort” function will sort a container in place. To keep the old, unsorted contents,
make a copy of the container first.

int iContainer.Sort(Container *);

Copying a container: Copy

The “Copy” function will make a fresh copy of a container. Some fields of the header
are copied: the error and compare functions, the flags, and others. Memory will be
allocated withe the source container allocator.

newContainer * iContainer.Copy(Container *);

28

2.8

2.9

29.1

2.9.2

2.10

2.10.1

2.10.2

2.8. Saving and loading a container to or from disk: Save and Load

Saving and loading a container to or from disk: Save and Load

The functions “Save” and “Load” will save / load the contents, state, and characteristics
of a container into / from disk. They need an open file stream, open in binary mode,
and in the correct direction: saving needs a stream open in the write direction, loading
needs a stream open in the read direction.

Inserting a container into another: Insertin

Sequential containers

int (*InsertIn) (Container *destination,
size_t position,
Container *source);

This function will insert into the ”destination” container the contents of the ”source”
container at the given position. The source is not modified in any way, and a copy of
its data will be used. Both containers must be of the same type and store elements of
the same type. The library only tests the element size of each one.

Associative containers
int (xInsertIn) (Container *destination, Container *source);

This function will insert into the destination container the source container using the
source container keys. Otherwise the same conditions apply as to the sequential con-
tainers: the containers must be of the same type and store elements of the same type.

Replace an element with another

Sequential containers: ReplaceAt

int (*ReplaceAt) (Container *dst,size_t position,void #*newData);
Replaces the element at the given position with the new data.

Associative containers: Replace

int (*Replace) (Dictionary *Dict, const unsigned char *Key,void *Value);

Replaces the element with the given key. If the element is absent nothing is done.

29

2.11

2.11.1

2. THE COMMON VOCABULARY: IGENERICCONTAINER

Looping through all elements of a container
The user has three methods for looping through all elements:
1. Using a simple loop construct
2. Using the “Apply” function
3. Using an iterator

One the most familiar design patterns is the ITERATOR pattern, which ‘provides a
way to access the elements of an aggregate object sequentially without exposing its
underlying representation’.

Traditionally, this is achieved by identifying an ITERATOR interface that presents
operations to initialize an iteration, to access the current element, to advance to the
next element, and to test for completion; collection objects are expected to implement
this interface, usually indirectly via an auxiliary object.

This is exactly the case in the iterator proposal here. Essential to the pattern is
the idea that elements are accessed sequentially, but independently of their ‘position’ in
the collection; for example, labeling each element of a tree with its index in left-to-right
order fits the pattern, but labeling each element with its depth does not. This traditional
version of the pattern is sometimes called an EXTERNAL ITERATOR.

An alternative INTERNAL ITERATOR approach assigns responsibility for manag-
ing the traversal to the collection instead of the client: the client needs only to provide
an operation, which the collection applies to each of its elements. The latter approach is
simpler to use, but less flexible; for example, it is not possible for the iteration to affect
the order in which elements are accessed, nor to terminate the iteration early. This is
the algorithm followed by the “Apply” function.

Using a simple loop to iterate a container

You can iterate any sequential container with a simple loop. You use the “Size” func-
tion to limit the loop. At each loop step you get the corresponding element with the
“GetElement” function, present in this form in all containers.

// "Container" is a pointer to some container

for (size_t i=0; i<iContainer.Size(Container); i++) {
someType *element = iContainer.GetElement (Container,i);
// Use "element" here.

}

For associative containers you retrieve first a StringCollection containing all keys using
the GetKeys function, present in all associative containers. Then, you retrieve each
element by looping through the string collection that you have obtained in a similar
manner to the sequential containers.

30

2.11.2

2.11.3

2.11. Looping through all elements of a container

Using the “Apply” function.

The “Apply” function will iterate through all elements calling a given function for each
one.l Its prototype is:

void iContainer.Apply(Container, //pointer to some container
int (*Applyfn) (void *elem,void *arg),
void *arg);

This function receives three arguments:
1. A pointer to the container.

2. A function pointer that should point to a function that receives two arguments:
the element of the container, and an extra argument where it can receive (and
write to) global information about the search. This extra argument is

3. The third one passed to the” Apply” function. Apply will pass this argument to the
given function together with a pointer to the element retrieved from the container.

Using iterators

[terators are objects returned by each container that allow you to iterate (obviously)
through all elements of a container. You use iterators like this:

Iterator *it = iContainer.newIterator (Container *);
mytype *myobject;
for (myobject = it->GetFirst(it);
myobject!= NULL;
myobject = it->GetNext(it)) {
// Work with "myobject" here
}

iContainer.Deletelterator(it); // dispose the iterator object

Iterators provide a container-independent way of iterating that will work with any con-
tainer, both sequential or associative. In associative containers the specific sequence is
implementation defined, and in sequential containers is the natural sequence. Iterators
always support always at least two methods:

void *iterator->GetFirst(iterator);
void *iterator->GetNext(iterator);
void *iterator->GetCurrent(iterator);

All containers support the “newlterator” and “deletelterator” methods:

iterator *iContainer.newlterator(Container);
int iContainer.deletelterator(iterator);

31

2.12

2.13

2.14

2. THE COMMON VOCABULARY: IGENERICCONTAINER

Iterators must be destroyed since they are allocated using the containers default alloca-
tor.
Sequential containers can support additional functions:

void *iterator->GetLast (iterator);
void *iterator->GetPrevious(iterator);

This interface allows users to write fully general algorithms that will work with any
container, independently of its internal structure. Obviously the performance can differ
from container to container depending on usage.

All iterators will become invalid if the underlying container changes in any way,except
through the iterator itself.?

Setting and retrieving the state: GetFlags and SetFlags

Each container has a set of flags that can be read and written to change the container’s
behavior. The only flag that is defined by all containers is the read-only flag. Implemen-
tations can extend this to offer different services like copy-on-write, or other applications.

Retrieving the number of elements stored: Size

All containers support querying the number of elements stored. The prototype is:
size_t iContainer.Size(Container *);

There is no error return. If an error occurs the result is zero.

Space used: Sizeof

This computes the total size used by the container in bytes, including the header struc-
ture, the data stored, and any related storage, for instance any free lists, spare space
used to grow an array, etc.

2This is completely different to the C++ language. In C++ you may have an invalid iterator if you
change the underlying container or not, depending on the operation and the specific container. This is
a bad interface for the following reasons:

1. There are many rules to remember without underlying principles. You have to know the specifics
of each container to know if the iterators are invalidated or not.

2. Any error leads directly to catastrophic consequences instead of being catched and signalled in
an orderly fashion. Worst, errors do not produce always the same consequences, depending on
what were the contents of the invalid memory you are using, on the memory allocation pattern,
etc. In short, any error leads to very difficult maintenance problems.

3. Any modifications of the container type lead to a review of all code that uses that container since
the rules change from container to container. Iterators that worked could be invalid now. This
another source of errors.

32

2.15

2.15.1

2.15. Memory management

size_t iContainer.Sizeof (Container *);

If its argument is NULL , Sizeof returns the size of the container header. This can be
used to allocate space for a container as a local variable for instance.

Memory management

All containers have a pointer to their allocator object. An allocator object is a simple
interface that provides 4 functions:

1. malloc: A function that receives a size_t and returns a void * pointing to a
memory block of the requested size, or NULL if no more memory is available

2. realloc: A function that will resize a previously allocated block

3. free: A function that will release the memory allocated previously with mal-
loc/realloc.

4. calloc: a function that will allocate n objects of m size and clear the memory block
to zero before returning it.

At the start of the library runtime a default allocator object exists that uses the four
functions of the standard C library. Other allocator objects can be used, and the user can
change the global allocator at any time. Each container retrieves the default allocator
object when created, and stores it in the container descriptor. Any further change to
the default allocator will not affect existing containers that have already an allocator.
When changing the allocator you should do that before creating the container.

Some containers are created without any heap management by default. You can
introduce heap management by calling the “UseHeap” function, that will install a new
heap in the container. Other containers are always created with a heap, and you should
pass them an allocator object for object creation.

Memory manager objects

The library provides two memory manager objects:

1. The default memory manager, that receives the standard C library functions; mal-
loc, free, realloc and calloc.

2. The debug memory manager that implements the same functions with added func-
tionality designed to:

e Catch the “double free” problem.
e Catch the overflow of a memory block

e (Catch freeing a block that wasn’t allocated

33

2.15.2

2.15.3

2. THE COMMON VOCABULARY: IGENERICCONTAINER

Pooled memory management

The problem with the traditional C memory management is that it requires that the
programmer cares about each piece of RAM that is allocated by the program and follows
the lifetime of each piece to ensure that it gets returned to the system for reuse. In
today’s software world, this is just impractical.

A better strategy is to use a pool of memory where related memory allocations can
b e done from a common pool. When the module finishes, all the allocated pool is freed
just by destroying the whole pool. This is much easier to manage, and in many cases
more efficient. The proposed interface has the following functionalities:

1. Creation. The creation function receives a memory allocator to use for this pool.

2. Alloc. This function receives a pool and a size and returns a memory block, or
NULL if there is no more memory.

3. Clear. This erases all objects allocated in the pool without returning the memory
to the system.

4. Destroy. This releases all memory and destroys all objects.

Note that there is no realloc, and that the “Clear” function is optional. Not all pools
support it. The rationale for these decisions being that realloc would need to store the
size of each block, what in a pool maintained by a single stack like pointer would be
very expensive.

Heap of same size objects

Many containers are used to store sets of objects of the same size. The library provides
a specialized heap management software for this application. It stores vectors of objects
of the same size. The interface provided is as follows:

e Create. This function receives a memory manager object that will be used to
allocate memory.

NewObject: returns an object to the application

AddToFreeList: Adds an object to the list of available objects

Size: Returns the size of the heap in bytes

DestroyFreeList: reclaims memory used by the free list

Destroy: Reclaims all memory used by the heap and the heap object

34

3 The auxiliary interfaces

3.1

Several interfaces implement different memory allocation strategies. This should give
flexibility to the implementations, allowing to use several memory allocation strategies

Memory management

within the same container.

—
realloc

calloc

malloc

free

realloc

Create
Default
AddToFreelList
DestroyFreelList
Destro
Memory
management Create

‘ Debug /

calloc

3.1.1

The heap memory manager for a collection of objects of the same size the pool memory
manager that manages a pool of different sized objects The basic memory managers The
C language provides several functions to manage memory. The MemoryManager object
presents an uniform interface for all memory managers that accept this interface.

The traditional memory manager

typedef struct tagMemoryManager {

void *(*malloc) (size_t);

35

3.1.2

3. THE AUXILIARY INTERFACES

void (*free) (void *);
void *(xrealloc) (void *,size_t);
void *(*calloc) (size_t,size_t);
} ContainerMemoryManager;
extern ContainerMemoryManager * CurrentMemoryManager;

At startup, the CurrentMemoryManager points to an object constructed with the func-
tions of the C standard library. This is a required interface. The user can change the
object that “CurrentMemoryManager” points to to another object that should have the
same interface.

The library can also include a debug version on top of the standard C functions,
offering the same interface. Changing the CurrentMemoryManager to point to that
object allows to switch to the debug version. The debug version offers:

e Detection of free() of a memory block not allocated by malloc().
e Detection of writing past the end of the block in some cases.
e Detection of freeing a memory block twice.

extern ContainerMemoryManager iDebugMalloc;

This interface is optional. The sample implementation documents a possible implemen-
tation, see 7.2.4 on page 204 .

The Heap interface: iHeap

Some containers can benefit from a cacheing memory manager that manages a stock of
objects of the same size. This is not required and not all implementations may provide
it. If they do, the interface is:

int (*UseHeap) (Container *c);
The standard interface for the heap is:

typedef struct tagHeapObject ContainerHeap;
typedef struct _HeapAllocatorInterface {
ContainerHeap *(*Create) (size_t ElementSize,
ContainerMemoryManager *m);
void *(*newObject) (ContainerHeap *heap);
void (*AddToFreeList) (ContainerHeap *heap,void *element);
void (*DestroyFreeList) (ContainerHeap *heap);
void (*Destroy) (ContainerHeap *heap);
ContainerHeap * (xInitHeap) (size_t ElementSize,void *heap,
ContainerMemoryManager *m);
size_t (*Sizeof) (ContainerHeap *heap);
} HeapInterface;
extern HeaplInterface iHeap;

36

3.1. Memory management

Create
ContainerHeap *iHeap.Create(size_t elementSize, MemoryManager *m) ;

Description: Creates a new heap object that will use the given memory manager to
allocate memory. All elements will have the given size. If the memory manager object
pointer is NULL , the object pointed by CurrentMemoryManager will be used.
Returns: a pointer to the new heap object or NULL , if an error occurred.

Errors:

CONTAINER_ERROR_BADARG The element size is bigger than what the heap implemen-
tation can support..

CONTAINER_.ERROR.NOMEMORY Not enough memory is available to complete the op-
eration.

InitHeap

ContainerHeap * (*InitHeap) (void *heap,size_t ElementSize,
ContainerMemoryManager *m) ;

Description: Initializes the given buffer to a heap header object designed to hold
objects of ElementSize bytes. The heap will use the given memory manager. If the
memory manager parameter is NULL the default memory manager is used.

This function supposes that the heap parameter points to a contiguous memory space
at least enough to hold a ContainerHeap object. The size of this object can be obtainer
by using the iHeap.Size API with a NULL parameter.

Returns: A pointer to the new ContainerHeap object or NULL if there is an error. Note
that the pointer returned can be different from the passed in pointer due to alignment
requirements.

newObject
void *iHeap.newObject(ContainerHeap *heap);

Description: The heap returns a pointer to a new object or NULL if no more memory
is left.

Errors:

CONTAINER_ERROR_.NOMEMORY Not enough memory is available to complete the op-
eration.

Returns: A pointer to an object or NULL if there is not enough memory to complete
the operation.

AddToFreelList

size_t iHeap.AddToFreeList(ContainerHeap *heap,void *element);

37

3. THE AUXILIARY INTERFACES

Description: Adds the given object to the list of free objects, allowing for recycling
of memory without new allocations. The element pointer can be NULL .
Errors:

CONTAINER_ERROR_BADARG The heap pointer is NULL .
Returns: The number of objects in the free list.

DestroyFreeList

void iHeap.DestroyFreeList(ContainerHeap *heap) ;

Description: Releases all memory used by the free list and resets the heap object to
its state as it was when created.
Errors:

CONTAINER_ERROR_BADARG The heap pointer is NULL .

Finalize
void iHeap.Finalize(ContainerHeap *heap);

Description: Destroys all memory used by the indicated heap and frees the heap object
itself.

Errors:

CONTAINER_ERROR_BADARG The heap pointer is NULL .

Sizeof
size_t iHeap.Sizeof (ContainerHeap *heap);

Description: Returns the number of bytes used by the given heap, including the size
of the free list. If the argument "heap" is NULL , the result is the size of the heap header
structure (i.e. sizeof (ContainerHeap).

Errors:

None.

Example:

void SomeFunction(void)

{
char buffer[iHeap.Sizerof (NULL)];
ContainerHeap *ch;
ch = iHeap.InitHeap(buffer,200,NULL);
// ...
iHeap.DestroyFreeList (ch);

+

38

3.2

3.2. Pooled memory interface: iPool

This example uses the variable length arrays that have been introduced in the C language
by the latest standard (C99). The Sizeof function returns the size of the header object
that is used to specify the size of the buffer. The buffer is passed to the InitHeap
function using a number of objects of 200 and the default memory allocator.

Pooled memory interface: iPool

Create
Alloc
Calloc

— Clear
“~__ Finalize

Many containers could benefit from a memory pool. A memory pool groups all
allocations done in a specific context and can be released in a single call. This allows
the programmer to avoid having to manage each single piece of memory like the basic
interface.

Pool

typedef struct _tagPoolAllocatorInterface {
Pool x*(xCreate)(ContainerMemoryManager *m);
void *(*Alloc) (Pool *pool,size_t size);
void *(*Calloc) (Pool *pool,size_t size);
void (*Clear) (Pool x*);
void (¥Finalize) (Pool *);

} PoolAllocatorInterface;

Note that there is no realloc function. Pooled memory is often implemented without
storing the size of the block to cut overhead. Since a realloc function could be expensive,
implementations are not required to provide it.

Create
Pool *iPool.Create(ContainerMemoryManager *m) ;

Description: Creates a new pool object that will use the given memory manager. If
m is null, the object pointed by the CurrentMemoryManager will be used.

Errors:

CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.
Returns: A pointer to the new object or NULL if the operation couldn’t be completed.

Alloc

void *iPool.Alloc(Pool *pool,size_t size);

39

3.3

3. THE AUXILIARY INTERFACES

Description: Allocates size bytes from the pool pool. If there isn’t enough memory to
resize the pool the result is NULL .

Errors:

CONTAINER_ERROR_NOMEMORY Not enough memory to complete the operation.
Returns: A pointer to the allocated memory or NULL if error.

Calloc

void *iPool.Calloc(Pool *pool,size_t n,size_t size);

Description: Allocates n objects of size “size” in a single block. All memory is initial-
ized to zero. If there is no memory left it returns NULL ;

Errors:

CONTAINER_ERROR_NOMEMORY Not enough memory to complete the operation.
Returns: A pointer to the allocated memory or NULL if error.

Clear

void iPool.Clear (Pool *);

Description: Reclaims all memory used by the pool and leaves the object as it was
when created.

Errors:

CONTAINER_ERROR_.BADARG The pool pointer is NULL .

Finalize
void iPool.Finalize(Pool *);

Description: Reclaims all memory used by the pool and destroys the pool object itself.
Errors:
CONTAINER_ERROR_.BADARG The pool pointer is NULL .

Error handling Interface: iError

The “iError” interface provides a default strategy for handling errors. The “RaiseError”
function will be used as the default error function within the creation function for all
containers that support a per container instance error function.

typedef (*ErrorFunction) (const char *,int,...);
typedef struct {
void (¥RaiseError) (const char *fname,int code,...);
void (*EmptyErrorFunction) (const char *fname,int code,...);

const char *(xStrError) (int errorCode);
ErrorFunction (*SetErrorFunction) (ErrorFunction);
} ErrorlInterface;

40

3.4

3.4. The iterator interface

RaiseError
void iError.RaiseError(const char *fname,int errcode,...);

Description: The parameter “fname” should be the name of the function where the
error occurs. The “errcode” parameter is a negative error code. The actual value of
the code is implementation defined. Other parameters can be passed depending on the
error. The behavior of the default error function is implementation specific. In the
sample code this function will just print the error message in the standard error stream.
Other implementations could end the program, or do nothing.

Returns: No return value

EmptyErrorFunction
void iError.EmptyErrorFunction(const char *fname,int errcode,...);

Description: This function can be used to ignore all errors within the library. It does
nothing.

StrError

const char *iError.StrError(int errorCode);

Description: Converts the given error code in a character string. If the error code
doesn’t correspond to any error defined by the implementation a charracter string with
an implementation defined value is returned.

SetErrorFunction

ErrorFunction iError.SetErrorFunction(ErrorFunction);

Description: Changes the value of the default error function. If its argument is NULL
, nothing is done, and the call is interpreted as a query of the current value.
Returns: The old value of the default error function.

The iterator interface

GetFirst

GetNext
newlterator

T

lterator e GetCurrent

""" GetPrevious
GetLast

deletelterator |

41

3.4.1

3. THE AUXILIARY INTERFACES

The iterator object exposes at least the functions “GetFirst”, for initializing the
loop, and “GetNext”, for getting the next element in the sequence. The functions
“newlterator” and “deletelterator” are specific to each container interface even if they
all have the same syntax.

The interface

typedef struct _Iterator {
void *(*GetNext) (Iterator *);
void *(*xGetPrevious) (Iterator *);
void *(*GetFirst) (Iterator *);
void *(*GetCurrent) (Iterator *);
void *(*GetLast) (Iterator *);

} Iterator;

GetCurrent

void *(*GetCurrent) (Iterator *);

Description: Returns the element at the cursor position.

Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .

Returns: A pointer to the first element or NULL , if the container is empty or an error
occurs. If the container is read-only, a pointer to a copy of the element is returned. This
pointer is valid only until the next iterator function is called.

GetFirst

void *(*GetFirst) (Iterator *);

Description: This function initializes the given iterator to the first element in the
container. For sequential operators this is the element with index zero. In associative
operators which element is the first is implementation defined and can change if elements
are added or removed from the container.

Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .

Returns: A pointer to the first element or NULL , if the container is empty or an error
occurs. If the container is read-only, a pointer to a copy of the element is returned. This
pointer is valid only until the next iterator function is called.

Example:

Iterator *mylterator;

List *myList;

myType *obj; // "myList" stores objects of type "myType"
mylterator = iList.newlterator(myList); // Request iterator

42

3.4. The iterator interface

for (obj = mylIterator->GetFirst(myIterator);
obj != NULL;
obj = myIterator->GetNext(myIterator)) {
//Use obj here

}

ilist.deletelterator(myIterator); // Reclaim memory

GetNext
void *(*GetNext) (Iterator *);

Description: Positions de cursor at the next element and returns a pointer to its
contents. If the container is read-only, a pointer to a copy of the object is returned.
This pointer is valid only until the next iterator function is called.

Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .
CONTAINER_ERROR_OBJECT_CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .

Returns: A pointer to the next element or NULL , if the cursor reaches the last element.
If the container is read-only, a pointer to a copy of the element is returned, valid until
the next element is retrieved

GetPrevious
void *(*GetPrevious) (Iterator *);

Description: Positions de cursor at the next element and returns a pointer to its
contents. This function is meaningful only in sequential containers. Its existence in
associative containers is implementation defined. Even in sequential containers, it can
be very expensive to find a previous element, for instance in single linked lists. In those
cases it can always return NULL .

Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .
CONTAINER_ERROR_OBJECT_CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .

Returns: A pointer to the next element or NULL , if the cursor reached the element
already. If the container is read-only, a pointer to a copy of the element is returned.
Example:

Iterator *mylterator;
List *myList;
myType *obj; // "myList" stores objects of type "myType"
myIlterator = ilist.newIterator(myList); // Request iterator
for (obj = myIterator->GetLast(myIterator);

obj != NULL;

43

3. THE AUXILIARY INTERFACES

obj = mylterator->GetPrevious(myIterator)) {
//Use obj here
+

ilist.deletelterator(myIlterator); // Reclaim memory

GetCurrent
void *GetCurrent(Iterator *);

Description: Returns a pointer to the current element’s data without moving the
Cursor.

GetLast

void *(*GetLast) (Iterator *);

Description: Positions the cursor at the last element and returns a pointer to it.
Returns NULL if the container is empty. If the container is read-only, a pointer to a copy
of the element is returned.

This function is meaningful only in sequential containers. Its existence in associative
containers is implementation defined. Even in sequential containers, it can be very
expensive to find the last element, for instance in single linked lists. In those cases it
can always return NULL .

Errors:

CONTAINER_ERROR_-BADARG The iterator pointer is NULL .
CONTAINER_ERROR_OBJECT_CHANGED The container has been modified and the iter-
ator is invalid. Further calls always return NULL .

44

4.1

The containers

The List interfaces: ilList, iDlist

The list container appears in two flavors:
e single linked lists: the iList type
e double linked lists the iDlist type

The space overhead of single linked lists is smaller at the expense of more difficult access
to the elements. It is up to the application programmer to decide which container fits
best in his/her application.

The interfaces of both containers are very similar. Double linked lists support all
functions in single linked ones, and add a few more. To avoid unnecessary repetition we
document here all the single linked list interface, then only the functions that the Dlist
interface adds to it.

typedef struct _List List;

typedef struct {
int (xAdd) (List *L,void *newval);
int (*AddRange) (List * AL,size_t n, void *data);
List *(xAppend) (List *11,List *12);
void (*Apply) (List *L,int(Applyfn) (void *elem,void *arg),void *arg);
int (*Clear) (List *L);
int (*Contains) (List *L,void *element);
List *(xCreate) (size_t element_size);
List *(xCreateWithAllocator) (size_t elementsize,

ContainerMemoryManager *allocator);

List *(*Copy) (List *L);
int (*deletelterator) (Iterator *);
int (*Erase) (List *L,void *);
int (*EraseAt) (List *L,size_t idx);
int (*EraseRange) (List *L,size_t start,size_t end);
int (xEqual) (List *11,List *12);
ContainerMemoryManager *(*GetAllocator) (List *1list);
void *(*GetElement) (List *L,int idx);
size_t (*GetElementSize) (List *1);

45

THE CONTAINERS

unsigned (*GetFlags) (List *L);

List *(xGetRange) (List *1,size_t start,size_t end);

int (*Finalize) (List *L);

int (*Index0f) (List *L,void *SearchedElement,size_t *result);

List *(xInit) (List *alist,size_t element_size);

List *(xInitWithAllocator) (List *alist,size_t element_size,
ContainerMemoryManager *allocator);

int (xInsert) (List *L,void *);

int (xInsertAt) (List *L,size_t idx,void *newVal);

int (*InsertIn) (List *Destination, size_t position, List *source);

List *(xLoad) (FILE *stream, ReadFunction loadFn,void *arg);

Iterator *(*newlIterator) (List *L);

int (*PushFront) (List *L,void *str);

int (*PopFront) (List *L,void *result);

int (*ReplaceAt) (List *L,size_t idx,void *newVal);

List *(*Reverse) (List *1);

int (*Save) (List *L,FILE *stream, SaveFunction saveFn,void *arg);

void *(*Seek) (Iterator *it,size_t pos);

CompareFunction (*SetCompareFunction) (List *1,CompareFunction fn);

DestructorFunction SetDestructor(List *1,DestructorFunction fn);

ErrorFunction (*SetErrorFunction) (List *L,ErrorFunction);

int (xSize) (List *L);

size_t (*Sizeof) (List *1);

int (*Sort) (List *1);

unsigned (*SetFlags) (List *L,unsigned flags);

int (*UseHeap) (List *L, ContainerMemoryManager *m) ;

} ListInterface;

extern ListInterface ilList;

46

4.1. The List interfaces: iList, iDlist

Life cycle

Create/CreateWithAllocator

Init/InitWithAllocator

f

Single linked
List Vocabulary

l

—

Add

Clear

Finalize

Managing elements EraseAt

EraseRange
InsertAt

ReplaceAt

Reverse

CopyElement

Retrieving data GetElement

GetRange

Whole list
operations Copy
Insertin
Contains
Equal

Queries Sizeof

newlterator

GetAllocator
GetFirst

GetNext

GetElementSize Iterators

/ Apply

GetCurrent

Looping GetPrevious
Memory del
management UseHeap eletelterator
PushFront
Stack
PopFront
Serializing Save

—'_ Load

SetErrorFunction

411 General remarks

Set Attributes SetCompareFunction
SetDestructor

Lists are containers that store each element in a sequence, unidirectionally (single linked
lists) or bidirectionally (double linked lists). The advantage of linked lists is their flexi-
bility. You can easily and with a very low cost remove or add elements by manipulating
the links between the elements. Single linked lists have less overhead than their double

linked counterparts

(one pointer less in each node), but they tend to use a lot of com-

47

4. THE CONTAINERS

puter power when inserting elements near the end of the list: you have to follow all links
from the beginning until you find the right one.

The list nodes themselves do not move around, only their links are changed. This
can be important if you maintain pointers to those elements. Obviously, if you delete a
node, its contents (that do not move) could be recycled to contain something else than
what you expect.

The “iList” interface consists (as all other interfaces) of a table of function pointers.
The interface describes the behavior of the List container.

The stack operations push and pop are provided with PushFront and PopFront be-
cause they have a very low cost, insertion at the start of a single linked list is very fast.
PushBack is the equivalent of the “Add” operation, but PopBack would have a very
high cost since it would need going through all the list.

The list container features in some implementations a per list error function. This is
the function that will be called for any errors, except in cases where no list object exists:
the creation function, or the error of getting a NULL pointer instead of a list pointer.
In those cases the general iError interface is used, and iError.RaiseError is called. The
default value of the list error function is the function iError.RaiseError at the moment
the list is created.

Other implementations of this interface may specialize list for a certain category of
uses: lists of a few elements would try to reduce overhead by eliminating a per list
error function and replace it with the standard error function in iError, for instance,
eliminating their fields in the header. If the read-only flag support is dropped, the whole
“Flags” field can be eliminated. In such an implementation, the SetFlags primitive
would always return an error code.

The List container supports the following state flags:

#define CONTAINER_LIST_READONLY 1

If this flag is set, no modifications to the container are allowed, and the Clear and
Finalize functions will not work. Only copies of the data are handed out, no direct
pointers to the data are available.

Add

int (*Add) (List *1,void *data);

Description: Adds the given element to the container. It is assumed that “data” points
to a contiguous memory area of at least ElementSize bytes. Returns a value greater than
zero if the addition of the element to the list completed successfully, a negative error
code otherwise. The error codes returned can be:

CONTAINER_ERROR_BADARG The list or the data pointers are NULL .
CONTAINER_ERROR_READONLY The list is read-only. No modifications allowed.
CONTAINER_ERROR_NOMEMORY Not enough memory to complete the operation.
Returns: Returns the number of elements stored if it is less than INT_MAX, or
INT_MAX if there are more elements stored than the value of INT_MAX. If the
return value is negative, an error occurred.

48

4.1. The List interfaces: iList, iDlist

Example:

/* This example shows how to:

(1) Create a linked list of "double" data

(2) Fill it using the "Add" function

(3) Print it using the GetElement function */
#include <containers.h>

static void PrintList(List *AL)

{
size_t i;
for (i=0; i<ilist.Size(AL);i++) {
printf ("%g ",*(double *)ilList.GetElement(AL,i));
}
printf("\n");
}
static void FillList(List * AL,size_t siz)
{
size_t 1i;
for (i=0; i<siz;i++) {
double d = i;
iList.Add(AL,&d);
}
+
int main(void)
{
List *AL = ilList.Create(sizeof (double));
FillList(AL,10);
PrintList (AL);
return O;
}
QUTPUT :

0123456789

AddRange
int (*AddRange) (List * AL,size_t n, void *data);

Description: Adds the n given elements to the end of the container. It is the same
operations as the PushBack operation. It is assumed that “data” points to a contiguous
memory area of at least n*ElementSize bytes. If n is zero no error is issued even if the
array pointer or the data pointer are NULL .

Errors:

49

4. THE CONTAINERS

CONTAINER_ERROR_BADARG The list or the data pointers are NULL , and n is not zero.
CONTAINER_ERROR_READONLY The list is read-only. No modifications allowed.
CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation completed, negative error code otherwise.

Append
int (*Append) (List *1listl,List *1ist2);

Description: Appends the contents of list2 to listl and destroys list2.

Errors:

CONTAINER_ERROR_BADARG Either list1 or list2 are NULL .
CONTAINER_ERROR_READONLY One or both lists are read only.

Returns: A positive value if the operation succeeded, or a negative error code other-
wise.

Example:

#include <containers.h>
static void PrintList(List *AL)

{
size_t 1i;
for (i=0; i<ilist.Size(AL);i++) {
printf("%g ",*(double *)iList.GetElement (AL,i));
}
printf ("\n");
+
static void FillList(List * AL,size_t siz)
{
size_t 1i;
for (i=0; i<siz;i++) { double d = i; ilist.Add(AL,&d);}
}
int main(void)
{
List *L1 = ilList.Create(sizeof (double));
List *L2 = iList.Create(sizeof (double));
FillList(L1,10);
FillList(L2,10);
iList.Append(L1,L2);
PrintList(L1);
return O;
}
QUTPUT:

0123456789012345672829

20

4.1. The List interfaces: iList, iDlist

Apply
int (*xApply) (List 1,int (Applyfn) (void *,void *),void *arg);

Description: Will call the given function for each element of the list. The first argument
of the callback function receives an element of the list. The second argument of the
callback is the arg argument that the Apply function receives and passes to the callback.
This way some context can be passed to the callback, and from one element to the next.
Note that the result of the callback is not used. This allows all kinds of result types to
be accepted after a suitable cast. If the list is read-only, a copy of the element will be
passed to the callback function.

Errors:

CONTAINER_ERROR_BADARG FEither list or Applyfn are NULL .
CONTAINER_ERROR_NOMEMORY : The list is read-only and there is no more memory to
allocate the buffer to copy each element.

Notes:

The list container of C++ has no direct equivalent, but in the algorithm part of the
STL there is a “for_each” construct, that does essentially the same. Java and C# offer
a similar “ForEach” functionality.

Example:

#include <containers.h>
static int Callback(void *pElement,void *pResult)
{

double *p = pElement;

double *result = pResult;

¥result += *p;

return 1;

void main(void)

{
double sum = 0;
List *list = iList.Create(sizeof (double));
double d = 2;
iList.Add(1list,&d);
d = 3;
iList.Add(1list,&d);
iList.Apply(list,Callback,&sum);
// Here sum should be 5.
printf ("%g\n",sum) ;

}

The above example shows a function callback as used by ”Apply”. It receives two
pointers, one to the current element and another to an extra argument that in this case

51

4. THE CONTAINERS

contains a pointer to the sum. For each call to the callback, the function adds the
contents of the element to the sum.

The main function creates a list, adds two elements with the values 2 and 3, and
then calls " Apply” to get their sum using the callback.

Clear

int (*Clear) (List *1);

Description: Erases all stored data and releases the memory associated with it. The
list header will not be destroyed, and its contents will be the same as when the list was
initially created. It is an error to use this function when there are still active iterators
for the container.

Errors:

CONTAINER_ERROR_BADARG The list pointer is NULL .
CONTAINER_ERROR_READONLY The list is read only.

Returns: The result is greater than zero if successful, or an error code if an error
occurs.

Notes:

Java, C+4 and C# have a similar “Clear” functionality.

Example:

List *1;
int m = iList.Clear(1l);

Contains
int (*Contains) (List *1list,void *data);

Description: Returns one if the given data is stored in the list, zero otherwise. The
“data” argument is supposed to point to an element at least ElementSize bytes. The list’s
comparison function is used for determining if two elements are equal. This comparison
function defaults to memcemp.

Errors:

CONTAINER_ERROR_BADARG Either list or data are NULL .

Notes:

C++ has std::find that does essentially the same . Java and C# have a “Contains”
method.

Example:

List *1list;
int r = ilist.Contains(list,&data);

Copy

List *(*Copy) (List *L);

52

4.1. The List interfaces: iList, iDlist

Description: A shallow copy of the given list is performed. Only ElementSize bytes
will be copied for each element. If the element contains pointers, only the pointers are
copied, not the objects they point to. The new memory will be allocated using the given
list’s allocator.

Errors:

CONTAINER_ERROR_NOMEMORY There is not enough memory to complete the opera-
tion.

CONTAINER_ERROR_-BADARG The given list pointer is NULL .

Notes:

C++ has no direct equivalent but the assignment operator should work, Java and C#
support a copy method.

Example:

List *newList,*01dList;
newList = ilList.Copy(0ldList);
if (newList == NULL) { /* Error handling =/ }

CopyElement
int (*CopyElement) (List *list,size_t idx,void *outBuffer);

Description: Copies the element data at the given position into the given buffer,
assuming that at least ElementSize bytes of storage are available at the position pointed
by the output buffer. The main usage of this function is to access data in a read only
container for later modification.

Errors:

CONTAINER_ERROR_BADARG The given list pointer or the output buffer are NULL .
CONTAINER_ERROR_INDEX The given position is out of bounds.

Returns: A positive value if the operation succeeded, or a negative error code if it
failed.

Notes:

Neither C# nor Java provide this functionality because the treatment of pointers in
those languages makes the need for such a construct unnecessary.

Example:

List *list; double d;
if (iList.CopyElement(list,3,&d) > 0)
printf ("The value at position 3 is %g\n",d);

Create
List *(xCreate) (size_t element_size);

23

4. THE CONTAINERS

Description: The creation function returns an empty List container, initialized with
all the default values. The current memory manager is used to allocate the space needed
for the List header. The list is supposed to contain elements of the same size. If the
elements you want to store are of different size, use a pointer to them, and create the
list with sizeof(void *) as the size parameter.
Returns: A pointer to a newly created List or NULL if an error occurs.
Errors:
CONTAINER_ERROR_NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER_ERROR_BADARG The given element size is zero or greater than what the
implementation allows for maximum object size.

Errors provoke the call of the current default error function of the library since this
is the creation function and there isn’t a container specific error function yet.
Example:

List *ListOfDoubles = ilList.Create(sizeof (double));

CreateWithAllocator

List *(xCreateWithAllocator) (size_t elem_size,
ContainerMemoryManager *allocator);

Description: The creation function returns an empty List container, initialized with

all the default values. The given memory manager is used to allocate the space needed

for the List header. The list is supposed to contain elements of the same size. If the

elements you want to store are of different size, use a pointer to them, and create the

list with sizeof(void *) as the size parameter.

Returns: A pointer to a newly created List or NULL if an error occurs.

Errors:

CONTAINER_ERROR_.NOMEMORY There is not enough memory to complete the opera-

tion.

CONTAINER_ERROR_BADARG The given element size is zero or greater than what the

implementation allows for maximum object size, or the given allocator pointer is NULL .
Errors provoke the call of the current default error function of the library since this

is the creation function and there isn’t a container specific error function yet.

Example:

ContainerMemoryManager *myAllocator;
List *List0fDoubles =
iList.CreateWithAllocator (sizeof (double) ,myAllocator);

deletelterator

int deletelterator(Iterator *it);

o4

4.1. The List interfaces: iList, iDlist

Description: Reclaims the memory used by the given iterator object
Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .
Returns: A positive value if successful or a negative error code.

Equal
int (*Equal) (List *1listiList *1list2);

Description: Compares the given lists using the list comparison function of either
list1 or list2 that must compare equal. If the list differ in their length, flags, or any
other characteristic they compare unequal. If any of their elements differ, they compare
unequal. If both list1 and list2 are NULL they compare equal. If both list1 and list2 are
empty they compare equal.

Errors:

None

Returns: The result is one if the lists are equal, zero otherwise.

Erase
int (*Erase) (List *1ist,void *data);

Description: Removes from the list the element that matches the given data, that is
assumed to be a pointer to an element.

Returns: A negative error code if an error occurred, or a positive value that indicates
that a match was found and the element was removed. If the element is not in the list
the result is CONTAINER_ERROR_NOTFOUND .

Errors:

CONTAINER_ERROR_BADARG One or both arguments are NULL .

Example:

double d = 2.3;
List *1list;
int r = ilist.Erase(list,&d);
if (r > 0)
printf("2.3 erased\n");
else if (r == CONTAINER_ERROR_NOTFQOUND)
printf ("No element with value 2.3 present\n");
else
printf("2.3 not erased. Error is \s\n",iError.StrError(r));

EraseAt

int (*EraseAt) (List *1list,size_t idx);

95

4. THE CONTAINERS

Description: Removes from the list the element at the given position.

Returns: A negative error code if an error occurred or a positive value that indicates
that the element was removed.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .
CONTAINER_ERROR_INDEX The given position is out of bounds.

Example:

List *list;
int r = ilList.EraseAt(list,2);
if (r > 0)
printf ("Element at position 2 erased\n");
else
printf ("Error code %d\n",r);

EraseRange
int (*EraseRange) (List *L,size_t start,size_t end);

Description: Removes from the list the given range, starting with the start index,
until the element before the end index. If end is greater than the length of the list, it
will be 'rounded’ to the length of the list.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .

Returns: A positive number indicates success, zero means nothing was erased, and a
negative number an error.

Example:

#include <containers.h>
static void print_list(List *1i)

{
int i;
for (i=0; i<iList.Size(1li); i++)
printf (" %d",*(int *)iList.GetElement(1i,i));
printf ("\n");
+
int main(void)
{

List *1i = ilList.Create(sizeof(int));

int 1i;

for (i=0; i<10;i++) {
iList.Add(1i,&i);

}

print_list(1i);

iList.EraseRange(1i,3,8);

26

4.1. The List interfaces: iList, iDlist

print_list(1i);
}
OQUTPUT:
0123456789
01289

Finalize
int (xFinalize) (List *1list);

Description: Reclaims all memory used by the list, including the list header object
itself.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .
CONTAINER_.ERROR_READONLY The list is read-only. No modifications allowed.
Returns: A positive value means the operation completed. A negative error code
indicates failure.

Example:

List *1list;
int r = ilist.Finalize(list);
if (r < 0) { /* error handling */ }

GetAllocator

ContainerMemoryManager *(*GetAllocator) (List *1);

Description: Returns the list’s allocator object. If the list pointer is NULL it returns
NULL .

GetElementSize

size_t (*GetElementSize) (List *1);

Description: Retrieves the size of the elements stored in the given list. Note that this
value can be different than the value given to the creation function because of alignment
requirements.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .

Returns: The element size.

Example:

List *1;
size_t siz = ilList.GetElementSize(1l);

GetElement

o7

4. THE CONTAINERS

void *(*GetElement) (List *1list,size_t idx);

Description: Returns a read only pointer to the element at the given index, or NULL
if the operation failed. This function will return NULL if the list is read only.

Use the CopyElement function to get a read/write copy of an element of the list.
Errors:
CONTAINER_ERROR_-BADARG The given list pointer is NULL .
CONTAINER_ERROR_INDEX The given position is out of bounds.
CONTAINER_ERROR_READONLY The list is read only.
Example:

List *1list;
double d = *(double *)iList.GetElement(list,3);

GetFlags / SetFlags

unsigned (*GetFlags) (List *1);
unsigned (*SetFlags) (List *1,unsigned newFlags);

Description: GetFlags returns the state of the container flags, SetFlags sets the flags
to a new value and returns the old value.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .

Returns: The flags or zero if there was an error.

GetRange

List *(*GetRange) (List *1list,size_t start,size_t end);

Description: Selects a series of consecutive elements starting at position start and
ending at position end. Both the elements at start and end are included in the result.
If start is greater than end start and end are interchanged. If end is bigger than the
number of elements in list, only elements up to the number of elements will be used.
If both start and end are out of range an error is issued and NULL is returned. The
selected elements are copied into a new list. The original list remains unchanged.
Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL
CONTAINER_ERROR_INDEX Both start and end are out of range.

Returns: A pointer to a new list containing the selected elements or NULL if an error
occurs.

Example:

List *1list;
List *range = ilList.GetRange(list,2,5);
if (range == NULL) { /* Error handling */ }

o8

4.1. The List interfaces: iList, iDlist

IndexOf

int (*Index0f) (List *1,void *ElementToFind,void *args,size_t *result);

Description: Searches for an element in the list. If found its zero based index is
returned in the passed pointer "result”.

Otherwise the result of the search is CONTAINER_ERROR_NOTFOUND and the passed
pointer will remain unmodified. The “args” argument will be passed to the comparison
function that is called by IndexOf.

Errors:

CONTAINER_ERROR_-BADARG The given list pointer or element are NULL .

Returns: A positive value if element is found or a negative value if not found or an
€rror OCCurs.

Example:

List *list;
double data;
size_t idx;
int r = ilList.Index0f (list,&data,&idx) ;
if (r == CONTAINER_ERROR_NOTFOUND)
printf ("Not found\n");
else if (r < 0)
printf ("Error\n");
else printf("Found at position %1ld\n",idx);

Init
List *(xInit) (List *alist,size_t element_size);

Description: Initializes the memory pointed by the aList argument. The new list
will use the allocator pointed by the current memory allocator. It is assumed that the
memory pointed by aList contains at least the size of the header object. This size can
be obtained by calling the Sizeof function with a NULL argument.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .

Example:

// This example uses C99
void Example(void)

{

char alList[iList.Sizeof (NULL)];

List *list = iList.Init((List *)alist);
}
InitWithAllocator

29

4. THE CONTAINERS

List *(*InitWithAllocator) (List *alist,
size_t element_size,
ContainerMemoryManager *allocator);

Description: Initializes the memory pointed by the aList argument. The new list
will use the given allocator. It is assumed that the memory pointed by aList contains
at least the size of the header object. This size can be obtained by calling the Sizeof
function with a NULL argument.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .

Insert At

int (xInsertAt) (List *L,size_t idx,void *newData);

Description: Inserts the new element. The new element will have the given index, that
can go from zero to the list count inclusive, i.e. one more than the number of elements
in the list. In single linked lists the cost for this operation is proportional to idx.
Errors:

CONTAINER_ERROR_BADARG The given list pointer or the element given are NULL .
CONTAINER_ERROR_READONLY The list is read only.

CONTAINER_ERROR_INDEX The given position is out of bounds.
CONTAINER_ERROR_NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A positive value if the operation succeeded, or a negative error code if the
operation failed.

Example:

double d;

List *1list;

int r = ilList.InsertAt(list,2,&d);
if (r < 0) { /* Error handling */ }

Insertln
int (*InsertIn) (List *Destination, size_t position, List *source);

Description: Inserts the list given in its third argument at the given position in the
list pointed to by its first argument. The data is copied, and the source argument is not
modified in any way. Both lists must have elements of the same type. The library only
tests the size of each one.

Errors:

CONTAINER_ERROR_-BADARG The source or the destination lists are NULL .
CONTAINER_ERROR_READONLY The destination list is read only.
CONTAINER_ERROR_INDEX The given position is out of bounds.

60

4.1. The List interfaces: iList, iDlist

CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

CONTAINER_ERROR_INCOMPATIBLE The lists store elements of different size.
Returns: A positive value if the operation succeeded, or a negative error code if the
operation failed.

Example:

#include <containers.h>
/* Prints the contents of a list */
static void PrintList(List *AL)

{
size_t 1i;
printf ("Count %1d\n", (long)ilist.Size(AL));
for (i=0; i<ilist.Size(AL);i++) {
printf ("%g ",*(double *)ilist.GetElement(AL,i));
}
printf("\n");
}

/* Fills a list with 10 numbers. The 10 is hardwired... */
static void FillList(List * AL,int start)

{
size_t 1i;
for (i=0; i<10;i++) {
double d = it+start;
iList.Add (AL, &d);
}
}

/* Creates two lists: one with the numbers from O to 9, another
with numbers 100 to 109, then inserts the second into the
first at position 5 */

int main(void)

{
List *AL = ilList.Create(sizeof (double));
List *AL1 =ilist.Create(sizeof (double));
FillList(AL,0);
FillList(AL1,100);
iList.InsertIn(AL,5,AL1);
PrintList (AL);
return O;

}

QUTPUT :

Count 20

01234 100 101 102 103 104 105 106 107 108 109 56 6 7 8 9

61

4. THE CONTAINERS

Load

List *(xLoad) (FILE *stream,ReadFunction readFn,void *arg);

Description: Reads a list previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
“arg” argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.

Errors:

CONTAINER_ERROR_BADARG The given stream pointer is NULL .
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A new list or NULL if the operation could not be completed. Note that the
function pointers in the list are NOT saved, nor any special allocator that was in the
original list. Those values will be the values by default. To rebuild the original state
the user should replace the pointers again with the new list.

newlterator
Iterator *(xnewlterator) (List *list);

Description: Allocates and initializes a new iterator object to iterate this list.
Errors:

CONTAINER_ERROR_.NOMEMORY No more memory is available.

Returns: A pointer to a new iterator or NULL if there is no more memory left.
Example:

List *1list;

Iterator *it = ilList.newIterator(list);

double *d;

for (d=it->GetFirst(it); d != NULL; d = it-—>GetNext(it)) {
double val = *d;
// Work with the value here

+

iList.deletelterator (it);

PopFront
int (*PopFront) (List *L,void *result);

Description: Pops the element at position zero copying it to the result pointer. If the
“result” pointer is NULL , the first element is removed without any copying. The library
supposes that result points to at least ElementSize bytes of contiguous storage.
Errors:

CONTAINER_ERROR_BADARG The list or the result pointer are NULL .
CONTAINER_ERROR_READONLY The list is read only.

62

4.1. The List interfaces: iList, iDlist

Returns: A positive value if an element was popped, zero if the list was empty, or a
negative error code if an error occurred.

Example:
double d;
int r = iList.PopFront(L,&d);
if (r==0)

printf("List empty\n");
else if (r < 0) {
printf ("Error %d\n",r);
else printf ("OK, popped value %g\n",d);

PushFront

int (*PushFront) (List *L,void *element);

Description: Inserts the given element at position zero.

Errors:

CONTAINER_ERROR_BADARG The list or the element pointer are NULL .
CONTAINER_ERROR_READONLY The list is read only.

CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A positive value if the operation completed, or a negative error code other-
wise.

Example:

double d = 2.3;
if (iList.PushFront(list,&d) < 0)
printf ("Error\n");

ReplaceAt
int (*ReplaceAt) (List *list,size_t idx,void #*newData);

Description: Replaces the list element at position idx with the new data starting at
the position pointed to by “newData” and extending ElementSize bytes.

Errors:

CONTAINER_ERROR_-BADARG The list or the new element pointer are NULL .
CONTAINER_ERROR_READONLY The list is read only.

CONTAINER_ERROR_INDEX The given position is out of bounds.

Returns: A negative error code if an error occurs, or a positive value if the operation
succeeded.

Example:

63

4. THE CONTAINERS

List *list;

double d = 6.7;

int r = iList.ReplaceAt(list,2,&d);
if (r < 0) { /* Error handling */ }

Reverse

int (*Reverse) (List *1list);

Description: Reverses the order of the given list: the head becomes the tail and the
tail becomes the head. The original order is lost.

Errors:

CONTAINER_ERROR_BADARG The list pointer is NULL .
CONTAINER_ERROR_READONLY The list is read only.

Returns: A negative error code if an error occurs, or a positive value if the operation
succeeded.

Example:

#include <containers.h>
static void print_list(List *1i)

{
int i;
for (i=0; i<iList.Size(1li); i++)
printf (" %d",*(int *)iList.GetElement(1i,i));
printf("\n");
+
int main(void)
{
List *1i = ilList.Create(sizeof (int));
int 1i;
for (i=0; i<10;i++) {
ilist.Add(1i,&i);
}
print_list(1i);
iList.Reverse(li);
print_list(li);
+
OUTPUT
0123456789
9876543210
Seek

void *(*Seek) (Iterator *it,size_t pos);

64

4.1. The List interfaces: iList, iDlist

Description: Positions the given iterator at the indicated position and then returns a
pointer to the element at that position. If the position is bigger than the last element
of the list, the last element position will be used.

Errors:

CONTAINER_ERROR_-BADARG The list or the new element pointer are NULL .
Returns: A pointer to the data of the given element or NULL if error.

Save
int (*Save) (List *1, FILE *stream,SaveFunction SaveFn, void *arg);

Description: The contents of the given list are saved into the given stream. If the save
function pointer is not NULL , it will be used to save the contents of each element and
will receive the arg argument passed to Save. Otherwise a default save function will be
used and arg will be ignored.

Errors:

CONTAINER_ERROR_BADARG The list pointer or the stream pointer are NULL . EOF A
disk input/output error occurred.

Returns: A positive value if the operation completed, a negative value or EOF other-
wise.

SetCompareFunction
CompareFunction (*SetCompareFunction)(List 1,CompareFunction f);

Description: if the f argument is non NULL , it sets the list comparison function to f.
Errors:

CONTAINER_ERROR_.BADARG The list pointer is NULL .
CONTAINER_.ERROR_READONLY The list is read only and the function argument is not
NULL .

Returns: The old value of the comparison function.

Example:

ErrorFunction fn,newfn;
List *1list;
fn = iList.SetCompareFunction(list,newfn);

SetAllocator

List *SetAllocator(List *1,ContainerMemoryManager #*allocator);

Description: Replaces the current allocator for the given list with the new one function
if different from NULL . The list must be empty, and the new allocator must be able to
allocate at least the size of the list header.

Errors:

CONTAINER_ERROR_.BADARG The list pointer is NULL .

65

4. THE CONTAINERS

CONTAINER_ERROR_READONLY The list is read only and the function argument is not
NULL .
Returns: The old value of the allocator, or NULL if there is an error.

SetDestructor
DestructorFunction SetDestructor(List *1,DestructorFunction fn);

Description: Sets the destructor function to its given argument. If the function argu-
ment is NULL nothing is changed and the call is interpreted as a query since the return
value is the current value of the destructor function. If the list argument is NULL , the
result is NULL .

Returns: The old value of the destructor.

SetErrorFunction

ErrorFunction (*SetErrorFunction) (List *L,ErrorFunction);

Description: Replaces the current error function for the given list with the new error
function if different from NULL .

Errors:

CONTAINER_ERROR_BADARG The list pointer is NULL .
CONTAINER_ERROR_READONLY The list is read only and the function argument is not
NULL .

Returns: The old value of the error function, or NULL if there is an error.

Size
size_t (*Size) (List *1);

Description: Returns the number of elements stored in the list.

Errors:

If the given list pointer is NULL , it returns SIZE_MAX.
Example:

List *1i;
size_t bytes = ilist.Size(1i);

Sizeof
size_t (*Sizeof) (List *1list);

Description: Returns the total size in bytes of the list, including the header, and all
data stored in the list. If 1ist is NULL , the result is the size of the List structure.
Returns: The number of bytes used by the list or the size of the empty List container
if the argument is NULL .

Example:

66

4.1. The List interfaces: iList, iDlist

List *1list;
size_t siz = ilist.Sizeof(list);

Sort

int Sort(List *list);

Description: Sorts the given list using the list comparison function. The order of the
original list is destroyed. You should copy it if you want to preserve it.

Returns: A positive number if sorting succeeded, a negative error code if not.
Example:

List *1list;
if (iList.Sort(list) < 0) { /* Error handling */ }

UseHeap
int (xUseHeap) (List *1list,ContainerMemoryManager *m);

Description: Adds a heap manager to the given list, that should be empty. The heap

manager will manage the free list and the allocation of new objects. Use this function

when the list will hold a great number of elements. This function is optional and may not

be present in all implementations. If m is NULL , the current memory manager object

will be used for allocating and reclaiming memory. Otherwise m should be a memory

manager object.

Errors:

CONTAINER_ERROR_BADARG The list pointer is NULL .

CONTAINER_ERROR.NOT_EMPTY The list is not empty or has already a heap.
Portability: This function is optional and may not be present in all implementations.

67

4. THE CONTAINERS

4.2 Double linked lists: iDlist

Life cycle Create/CreateWithAllocator
Init/InitWithAllocator Add
Clear AddRange
Finalize Erase
Managing elements Crasent
EraseRange
InsertAt
CopyElement Replace
GetElement ReplaceAt
GetRange Reverse
nerieving Whole list Copy
ata operations Insertin
Contains Equal
Size Spli
Queries Sizeof plice
GetAllocator
GetFlags newlterator
DI | St SetFlags GetFirst
GetElementSize GetNext
Vocabul ary lterators GetCurrent
Looping Apply GetPrevious
Seek
Memory deletelterator
management UseHeap
PushBack
o Save Stack PushFront
Serializing Load PopFront
SetErrorFunction PopBack
Set Attributes SetCompareFunction P
SetDestructor

Differences with the list vocabulary are marked in bold.

68

4.2. Double linked lists: iDlist

Double linked lists have a pair of pointers pointing to the next and to the previous
element in the list. It is easy then, to move in either direction through the list. The price
to pay is a higher overhead for each element. This container shares most of its interface
with the single linked list container. Here we document the functions that aren’t already
described for the list container.

typedef struct Dlist Dlist;
typedef struct {
int (xAdd) (Dlist *dlist,void *newVal);
Dlist *(*Append) (Dlist *11,Dlist *12);
int (*Apply) (Dlist *L,int (ApplyFn) (void *,void *),void *arg);
int (*Clear) (Dlist *dlist);
int (*Contains) (Dlist *dlist,void *element) ;
Dlist *(*Copy) (Dlist *dlist);
Dlist *(*Create) (size_t elementSize);
Dlist *(*CreateWithAllocator) (size_t elementSize,
ContainerMemoryManager *,allocator);
int (*deletelterator) (Iterator x*);
int (*Equal) (Dlist *11,Dlist *12);
int (xErase) (Dlist *dlist,void *);
int (*EraseAt) (Dlist *dlist,size_t idx);
int (*Finalize) (Dlist *dlist);
size_t (*GetElementSize) (Dlist *);
void *(*GetElement) (Dlist *dlist,int idx);
unsigned (*GetFlags) (Dlist *dlist);
Dlist *(*GetRange) (Dlist *1,size_t start,size_t end);
int (*Index0f) (Dlist *dlist,void *SearchedElement,size_t *result);
Dlist *(xInit) (Dlist *dlist,size_t elementsize);
int (xInsert) (Dlist *dlist,void *);
int (xInsertAt) (Dlist *dlist,size_t idx,void *newVal);
int (xInsertIn) (Dlist *1, size_t idx,Dlist *newData);
Dlist *(*Load) (FILE *stream, ReadFunction loadFn,void *arg);
Iterator *(*newlIterator) (Dlist *);
int (*PopBack) (D1list *AL,void *result);
int (xPopFront) (Dlist *AL,void *result);
int (xPushBack) (Dlist *AL,void *str);
int (*PushFront) (Dlist *AL,void *str);
int (*ReplaceAt) (Dlist *dlist,size_t idx,void *newVal);
Dlist *(*Reverse) (Dlist *1);
int (xSave) (Dlist *L,FILE *stream, SaveFunction saveFn,void *arg);
CompareFunction (*SetCompareFunction) (Dlist *1,CompareFunction Fn);
DestructorFunction (*SetDestructor) (Dlist *1,
DestructorFunction fn);
ErrorFunction (*SetErrorFunction) (Dlist *L,ErrorFunction);

69

4. THE CONTAINERS

unsigned (*SetFlags) (Dlist *dlist,unsigned flags);
int (*Size) (Dlist *dlist);
int (*Sort) (Dlist *1);
Dlist *(xSplice)(Dlist *list,
void *Pos,Dlist *toInsert,int direction);
int (*UseHeap) (Dlist *L, ContainerMemoryManager *m) ;
} DlistInterface;

extern DlistInterface iDlist;

PopBack

int (*PopBack) (List *L,void *result);

Description: Pops the element at position zero copying it to the result pointer. If
the “result” pointer is NULL , the last element is removed without any copying. Other-
wise, the library supposes that result points to at least ElementSize bytes of contiguous
storage.

Errors:

CONTAINER_ERROR_BADARG The list or the result pointer are NULL .
CONTAINER_ERROR_READONLY The list is read only.

Returns: A positive value if an element was popped, zero if the list was empty, or a
negative error code if an error occurred.

Example:
double d;
int r = iList.PopBack(L,&d);
if (r==0)

printf ("List empty\n");
else if (r < 0) {
printf ("Error %d\n",r);
else printf ("OK, popped value %g\n",d);

PushBack
Synopsis:
int (*PushBack) (List *L,void *element);

Description: Inserts the given element at position zero.

Errors:

CONTAINER_ERROR_BADARG The list or the element pointer are NULL .
CONTAINER_ERROR_READONLY The list is read only.
CONTAINER_ERROR_NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A positive value if the operation completed, or a negative error code other-
wise.

70

4.2. Double linked lists: iDlist

Example:

double d = 2.3;
if (iList.PushFront(list,&d) < 0)
printf ("Error\n");

Splice

Synopsis:
Dlist *(xSplice)(Dlist *1list, void *Pos, Dlist *tolInsert,int direction);

Description: Inserts a list (parameter “tolnsert”) into another one (parameter “list”)
at the given position that should be an element of “list”. The direction argument means
to insert before the position if zero, after the position if not zero.

Errors:

CONTAINER_ERROR_BADARG The list, the list to be inserted or the element pointer are
NULL .

CONTAINER_ERROR_READONLY The list is read only.

71

4. THE CONTAINERS

4.3 The Vector interface: iVector

Create/CreateWithAllocator
Clear

Finalize
Add

Life

Managing
elements

EraseAt

Insert
InsertAt

Retrieving ReplaceAt
data GetElement
CGetRange

Searchin IndexOf GetElementSize
/ _Mismatch Size
Queries Sizes £ Sizeof

Vector Flags GetFlags
Po SetFlags
PushBack
newlterator
Iterators GetFirst
Looping 4 Apply GetNext

Serializin Save
Whole
container A

operations

GetCurrent

GetPrevious
deletelterator

end
Copy

Insertin

Reverse

Utility SetErrorFunction

Functions < SetDestructor

SetCompareFunction

Vector vocabulary.
72

4.3.1

4.3. The Vector interface: iVector

The ”vector” container is an array that resizes to accommodate new elements. Access
is always checked against the array bounds. Insertion and deletion of items are more
expensive than in lists, and the cost increases linearly with the array size. Access is very
cheap, since a multiplication suffices to get to any array position.

Most functions of the interface are shared with the list, Dlist and the other sequential
containers.

The interface

typedef struct {

int (*Add) (Vector *AL,void *newval);
int (*AddRange) (Vector *AL,size_t n, void *newvalues);
int (*Append) (Vector *AL1,Vector *AL2);
int (*Apply) (Vector *AL,

int (*Applyfn) (void *elm,void *arg),

void *arg);
int (*Clear) (Vector *AL);
Vector *(*Create) (size_t elementsize,size_t startsize);
Vector *(*CreateWithAllocator) (size_t elementsize,

size_t startsize,ContainerMemoryManager *allocator);
int (*Contains) (Vector *AL,void *str,void *ExtraArgs);
Vector *(*Copy) (Vector *AL);
void **(*xCopyTo) (Vector *AL);
int (xdeletelterator) (Iterator *);
int (xErase) (Vector *AL,void *);
int (*EraseAt) (Vector *AL,size_t idx);
int (*Finalize) (Vector *AL);
size_t (*Finalize) (Vector) (const Vector *AL);
void *(*GetElement) (Vector *AL,size_t idx);
size_t (*GetElementSize) (const Vector *AL);
unsigned (*GetFlags) (const Vector *AL);
Vector *(*GetRange) (Vector *AL,size_t start,size_t end);
int (*Index0f) (Vector *AL, void *elemToSearch,

void *ExtraArgs, size_t *result);
int (xInsert) (Vector *AL,void *);
int (xInsertAt) (Vector *AL,size_t idx,void *newval);
int (xInsertIn) (Vector *1, size_t idx,Vector *newData)
Vector *(*Load) (FILE *stream, ReadFunction readFn,void *arg);
int (*Mismatch) (const Vector *al,const Vector *a2,
size_t *result);

Iterator *(xnewlterator) (Vector *AL);
int (xPushBack) (Vector *AL,void *element);
int (*PopBack) (Vector *AL,void *result);
int (*ReplaceAt) (Vector *AL,size_t idx,void *newval);

73

4.3.2

4. THE CONTAINERS

int (*Reverse) (Vector *AL);

int (*SetCapacity) (Vector *AL,size_t newCapacity);

CompareFunction (*SetCompareFunction) (Vector *AL,
CompareFunction f);

DestructorFunction (*SetDestructor) (Vector *v,
DestructorFunction fn);

ErrorFunction (*SetErrorFunction) (Vector *AL,ErrorFunction);

unsigned (*SetFlags) (Vector *AL,unsigned flags);

size_t (*Size) (const Vector *AL);

size_t (*Sizeof) (Vector *AL);

int (*Sort) (Vector *AL);

int (*Save) (Vector *AL,FILE *stream, SaveFunction Fn,void *arg);

} VectorInterface;

The API

Add
int (*Add) (Vector *AL,void *data);

Description: Adds the given element to the end of the container. It is the same
operations as the PushBack operation. It is assumed that “data” points to a contiguous
memory area of at least ElementSize bytes. Returns a value greater than zero if the
addition completed successfully, a negative error code otherwise.

Errors:

CONTAINER_ERROR_BADARG The vector or the data pointers are NULL .
CONTAINER_.ERROR_READONLY The vector is read-only. No modifications allowed.
CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation completed, negative error code otherwise.
Example:

Vector *AL;

double data = 4.5;

int result = iVector.Add(AL,&data);

if (result < 0) { /* Error handling */ }

AddRange
int (*Add) (Vector *AL,size_t n, void *data);

Description: Adds the n given elements to the end of the container. It is the same
operations as the PushBack operation. It is assumed that “data” points to a contiguous
memory area of at least n*ElementSize bytes. Returns a value greater than zero if the
addition completed successfully, a negative error code otherwise. If n is zero no error is
issued even if the array pointer or the data pointer are NULL .

74

4.3. The Vector interface: iVector

Errors:

CONTAINER_ERROR_BADARG The vector or the data pointers are NULL , and n is not
ZEro.

CONTAINER_-ERROR_-READONLY The vector is read-only. No modifications allowed.
CONTAINER_.ERROR.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation completed, negative error code otherwise.
Example:

Vector *AL;

double datall = {4.5, 4.6, 4.7 };

int result = iVector.Add(AL,3, data);

if (result < 0) { /* Error handling */ }

Append
int (*Append) (Vector *AL1, Vector *AL2);

Description: Adds all elements of AL2 at the end of the first container AL1.

Errors:

CONTAINER_ERROR_BADARG One of the Vector pointer is NULL .
CONTAINER_ERROR_READONLY The first argument is read-only. No modifications al-
lowed.

CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation completed, negative error code otherwise.

Apply
int (*Apply) (Vector 1,int (Applyfn) (void *,void *),void *arg);

Description: Will call the given function for each element of the array. The first
argument of the callback function receives an element of the array. The second argument
of the callback is the arg argument that the Apply function receives and passes to the
callback. This way some context can be passed to the callback, and from one element
to the next. Note that the result of the callback is not used. This allows all kinds of
result types to be accepted after a suitable cast. If the array is read-only, a copy of the
element will be passed to the callback function.

Errors:

CONTAINER_ERROR_BADARG Either list or Applyfn are NULL .
CONTAINER_ERROR.NOMEMORY The list is read-only and there is no more memory to
allocate the buffer to copy each element.

Returns: A positive value if no errors or a negative error code.

Example:

static int Callback(void *pelement,void *pResult)
{
double *p = pelement;

75

4. THE CONTAINERS

double *result = pResult;
*pResult += *p;
return 1;
}
double AddVector(Vector *1) {
double sum = O;
Vector *alist = iVector.Create(sizeof (double));

double d = 2;
iVector.Add(1list,&d) ;
d = 3;

iVector.Add(alist,&d);
iList.Apply(alist,Callback,&sum);
// Here sum should be 5.

return sum;

Clear

int (*Clear) (Vector *1);

Description: Erases all stored data and releases the memory associated with it. The
vector header will not be destroyed, and its contents will be the same as when the
array was initially created. It is an error to use this function when there are still active
iterators for the container.

Returns: The result is greater than zero if successful, or an error code if an error occurs.
Errors:

CONTAINER_ERROR_BADARG The vector pointer is NULL .
CONTAINER_ERROR_READONLY The vector is read only.

Example:

Vector *Al;
int m = iVector.Clear(Al);

Contains
int (*Contains) (Vector *a,void *data);

Description: Searches the given data in the array. The “data” argument is supposed
to point to an element at least ElementSize bytes. The list’s comparison function is
used for determining if two elements are equal. This comparison function defaults to
memcmp.

Errors:

CONTAINER_ERROR _BADARG Either array or data are NULL .

Returns: One if the given data is stored in the list, zero otherwise. If either daata
pointer or the array pointer are NULL returns a negative error code.

76

4.3. The Vector interface: iVector

Example:

Vector x*a;
int r = iVector.Contains(a,&data);

Copy
Vector *(*Copy) (Vector *A);

Description: A shallow copy of the given array is performed. Only ElementSize bytes
will be copied for each element. If the element contains pointers, only the pointers are
copied, not the objects they point to. The new memory will be allocated using the given
array’s allocator.

Errors:

CONTAINER_ERROR_NOMEMORY There is not enough memory to complete the opera-
tion.

CONTAINER_ERROR_BADARG The given vector pointer is NULL .

Example:

Vector *newVector,*0ldVector;
newVector = iVector.Copy(0ldVector);

Create
Vector *(*Create) (size_t element_size,size_t startsize);

Description: The creation function returns an empty array, initialized with all the
default values. The current memory manager is used to allocate the space needed for
the header. The array is supposed to contain elements of the same size. If the elements
you want to store are of different size, use a pointer to them, and create the list with
sizeof(void *) as the size parameter.
Returns: A pointer to a newly created List or NULL if an error occurs.
Errors:
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.
CONTAINER_ERROR_-BADARG The given element size is zero.

Any errors provoke the call the current default error function of the library since this
is the creation function.
Example:

Vector #*DArray = iVector.Create(sizeof (double),100);

CreateWithAllocator

Vector *(*CreateWithAllocator) (size_t elementsize,
size_t startsize,ContainerMemoryManager *allocator);

77

4. THE CONTAINERS

Description: This function is identical to Create with the difference that it accepts a
pointer to an allocator object. Actually, Create can be written as:
return CreateWithAllocator(elementsize,startsize,CurrentMemoryManager) ;

Contains
int (*Contains) (Vector *AL,void *data);

Description: Searches for the given data in the array. The “data” argument is supposed
to point to an element at least ElementSize bytes. The array’s comparison function is
used for determining if two elements are equal. This comparison function defaults to
memcmp.

Returns: One if the given data is stored in the list, zero otherwise. If an error occurs,
it returns a negative error code.

Errors:

CONTAINER_ERROR_BADARG Either list or data are NULL .

Example:

Vector *AL;
int r = iVector.Contains (AL, &data);

CopyTo
void **(*CopyTo) (Vector *AL);

Description: Copies the whole contents of the given array list into a table of pointers
to newly allocated elements, finished by a NULL pointer.

Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A pointer to a table of pointers or NULL if an error occurs.

deletelterator
int deletelterator(Iterator *it);

Description: Reclaims the memory used by the given iterator object

Returns: Integer smaller than zero with error code or a positive number when the
operation completes.

Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .

Equal

int (*Equal) (Vector *first,Vector *second);

78

4.3. The Vector interface: iVector

Description: Compares the given arrays. If they differ in their length, flags, or element
size they compare unequal. If any of their elements differ, they compare unequal. If
both first and second are NULL they compare equal.

Errors:

None

Returns: The result is one if the lists are equal, zero otherwise.

Erase
int (xErase) (Vector *AL,void *data);

Description: Removes from the list the element that matches the given data, that is
assumed to be a pointer to an element.

Returns: A negative error code if an error occurred, or a positive value that indicates
that a match was found and the element was removed. If the element is not in the list
the result value is CONTAINER_ERROR_NOTFOUND .

Errors:

CONTAINER_ERROR_BADARG One or both arguments are NULL .

Example:

double d = 2.3;

Vector *AL;
int r = iVector.Erase(AL,&d);
if (r > 0)

printf("2.3 erased|n");
else if (r == 0)

printf("No element with value 2.3 present\n");
else

printf("error code %d\n",r);

EraseAt
int (*EraseAt) (Vector *AL,size_t idx);

Description: Removes from the array the element at the given position.

Returns: A negative error code if an error occurred or a positive value that indicates
that the element was removed.

Errors:

CONTAINER_ERROR_BADARG The given vector pointer is NULL .
CONTAINER_ERROR_INDEX The given position is out of bounds.

Example:
Vector *AL;
int r = iVector.EraseAt(AL,2);
if (r > 0)

printf ("Element at position 2 erased\n");

79

4. THE CONTAINERS

else
printf ("Error code %d\n",r);

Finalize
int (*Finalize) (Vector *AL);

Description: Reclaims all memory used by the container, including the array header
object itself.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .
CONTAINER_ERROR_READONLY The container is read-only. No modifications allowed.
Returns: A positive value means the operation completed. A negative error code
indicates failure.

Example:

Vector *AL;
int r = iVector.Finalize(AL);
if (r < 0) { /* error handling */ }

GetCapacity
size_t (*GetCapacity) (Vector *AL);

Description: Returns the number of elements the array can hold before it needs to
reallocate its data.

Errors:

CONTAINER_ERROR_BADARG The given array is NULL .

Returns: The array capacity or zero if there was an error.

GetElementSize

size_t (*GetElementSize) (Vector *AL);

Description: Retrieves the size of the elements stored in the given list. Note that this
value can be different than the value given to the creation function because of alignment
requirements.

Errors:

CONTAINER_ERROR_BADARG The given list pointer is NULL .

Returns: The element size.

Example:

Vector *AL;
size_t siz = iVector.GetElementSize(AL);

GetElement

80

4.3. The Vector interface: iVector

void *(*GetElement) (Vector *AL,size_t idx);

Description: Returns a read only pointer to the element at the given index, or NULL
if the operation failed. This function will return NULL if the list is read only.

Use the CopyElement function to get a read/write copy of an element of the list.
Errors:
CONTAINER_ERROR_BADARG The given array pointer is NULL .
CONTAINER_ERROR_INDEX The given position is out of bounds.
CONTAINER_ERROR_-READONLY The array is read only.
Example:

Vector *AL;
double *d = ilList.GetElement (AL,3);
if (d == NULL) { /* Error handling */ }

GetFlags / SetFlags

unsigned (*GetFlags) (Vector *AL);
unsigned (*SetFlags) (Vector *AL,unsigned newFlags);

Description: GetFlags returns the state of the container flags, SetFlags sets the flags
to a new value and returns the old value.
The Vector container supports the following flags:
CONTAINER_LIST_READONLY If this flag is set, no modifications to the con-
tainer are allowed, and the Clear and Finalize functions will not work. The GetElement
function will always return NULL . You should use the CopyElement function to access
the data

GetRange
Vector *(*GetRange) (Vector *AL,size_t start,size_t end);

Description: Selects a series of consecutive elements starting at position start and
ending at position end. Both the elements at start and end are included in the result.
If start ; end or start ; list-;count, an empty list is returned. If end is bigger than the
number of elements in list, only elements up to the number of elements will be used.
The selected elements are copied into a new list. The original list remains unchanged.
Errors:

CONTAINER_ERROR_.BADARG The given list pointer or the element given are NULL
Returns: : A pointer to a new list containing the selected elements or NULL if an error
occurs.

Example:

Vector *AL;
Vector *range = iVector.GetRange(AL,2,5);
if (range == NULL) { /* Error handling */ }

81

4. THE CONTAINERS

IndexIn
Vector *(xIndexIn) (Vector *SC,Vector *AL);

Description: Returns an array built from indexing the first argument ("SC”) with
the array of indexes "AL” that should be an array of size_t elements. The number of
elements of the resulting array is equal to the number of elements of the indexes array.
Errors:

CONTAINER_ERROR_BADARG The given array pointer or the indexes array are NULL .
CONTAINER_ERROR_INDEX Any given position is out of bounds.
CONTAINER_ERROR_NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A new arraylist or NULL if an error occurs. No partial results are returned.
If any index is out of bounds the whole operation fails.

IndexOf

int (*Index0f) (Vector *1,void *data,void *ExtraArgs,size_t *result);

Description: Searches for an element in the array. If found its zero based index is
returned in the pointer "result”. Otherwise the result of the search is CONTAINER. -
ERROR_NOTFOUND . The “extraArgs” argument will be passed to the comparison func-
tion, that is used to compare elements.

Errors:

CONTAINER_ERROR_BADARG The given array pointer or the element given are NULL .
Returns: A positive number if the element is found, or a negative number containing
an error code or the negative constant CONTAINER_ERROR_NOTFOUND .

Example:

Vector *AL;
double data = 6.8;
size_t pos;
int r = iVector.Index0f (AL,&data,NULL,&pos);
if (r == CONTAINER_ERROR_NOTFQOUND)
printf ("Not found\n");

InsertAt

int (*InsertAt) (Vector *AL,size_t idx,void *newData);

Description: Inserts the new element. The new element will have the given index, that
can go from zero to the list count inclusive, i.e. one more than the number of elements
in the list. In single linked lists the cost for this operation is proportional to idx.
Errors:

CONTAINER_ERROR_BADARG The given list pointer or the element given are NULL .
CONTAINER_ERROR_READONLY The list is read only.

82

4.3. The Vector interface: iVector

CONTAINER_ERROR_INDEX The given position is out of bounds.
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A positive value if the operation succeeded, or a negative error code if the
operation failed.

Example:

double d;

Vector *AL;

int r = iVector.InsertAt(AL,2,&d);
if (r < 0) { /* Error handling */ }
else { /* Normal processing */ }

Insertln
int (*InsertIn) (Vector *Destination, size_t pos, Vector *src);

Description: Inserts the array given in its third argument at the given position in the
array pointed to by its first argument. The data is copied, and the source argument is
not modified in any way. Both arrays must have elements of the same type. The library
only tests the size of each one.

Errors:

CONTAINER_ERROR_-BADARG The source or the destination lists are NULL .
CONTAINER_ERROR_READONLY The destination list is read only.
CONTAINER_ERROR_INDEX The given position is out of bounds.
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

CONTAINER_ERROR_INCOMPATIBLE The lists store elements of different size.
Returns: A positive value if the operation succeeded, or a negative error code if the
operation failed.

Example:

#include <containers.h>
static void PrintVector(Vector *AL)

{
size_t 1i;
printf ("Count %1ld, Capacity %1ld\n", (long)iVector.Size(AL),
(long)iVector.GetCapacity(AL)) ;
for (i=0; i<iVector.Size(AL);i++) {
printf("%g ",*(double *)iVector.GetElement (AL,i));
}
printf ("\n");
}

static void FillVector(Vector * AL,int start)

83

4. THE CONTAINERS

{
size_t 1i;
for (i=0; i<10;i++) {
double d = i+start;
iVector.Add (AL, &d) ;
}
+
int main(void)
{
Vector *AL = iVector.Create(sizeof (double),10);
Vector *AL1 =iVector.Create(sizeof (double),10);
FillVector(AL,O);
FillVector(AL1,100);
iVector.InsertIn(AL,5,AL1);
PrintVector (AL);
return O;
+
OUTPUT:

Count 20, Capacity 20
01234 100 101 102 103 104 105 106 107 108 109 5 6 7 8 9

Load

Vector *(*Load) (FILE *stream,ReadFunction readFn,void *arg);

Description: Reads an array previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
“arg” argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.

Errors:

CONTAINER_ERROR_BADARG The given stream pointer is NULL .
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A new array or NULL if the operation could not be completed. Note that the
function pointers in the array are NOT saved, nor any special allocator that was in the
original list. Those values will be the values by default. To rebuild the original state
the user should replace the pointers again in the new array.

newlterator

Iterator *(*newlterator) (Vector *AL);

84

4.3. The Vector interface: iVector

Description: Allocates and initializes a new iterator object to iterate this array.
Errors:

If no more memory is available it returns NULL .

Returns: A pointer to a new iterator or NULL if there is no more memory left.
Example:

Vector *AL;

Iterator *it = iVector.newIterator (AL);

double *d;

for (d=it->GetFirst(it); d != NULL; d = it->GetNext(it)) {
double val = *d;
// Work with the value here

}

iVector.deleteIlterator(it);

Mismatch

int (xMismatch) (const Vector *al,const Vector *a2,
size_t *mismatch) ;

Description: Returns the index of the first element that is different when comparing
both arrays in the passed pointer mismatch. If one array is shorter than the other
the comparison stops when the last element from the shorter array is compared. The
comparison stops when the first difference is spotted.

Errors:

CONTAINER_ERROR_BADARG Any of the arguments is NULL .

Returns: If a mismatch is found the result is greater than zero and the mismatch
argument will contain the index of the first element that compared unequal. This will
be always the case for arrays of different length.

If both arrays are the same length and no differences are found the result is zero
and the value pointed to by the mismatch argument is one more than the length of the
arrays.

If an error occurs, a negative error code is returned. The mismatch argument contains
zZero.

PopBack

int (*PopBack) (Vector *AL,void *result);

Description: Copies the last element into the given result buffer and deletes the element
from the container. If the result buffer is NULL , no copy is performed.

Errors:

CONTAINER_ERROR_BADARG The array is NULL .

CONTAINER_ERROR_-READONLY The array is read only.

85

4. THE CONTAINERS

Returns: A negative value if an error occurs, zero if the array is empty or greater than
zero if the operation succeeded.

ReplaceAt
int (*ReplaceAt) (Vector *AL,size_t idx,void *newData);

Description: Replaces the array element at position idx with the new data starting at
the position pointed to by “newData” and extending ElementSize bytes.

Errors:

CONTAINER_ERROR_BADARG The array or the new element pointer are NULL .
CONTAINER_ERROR_READONLY The array is read only.

CONTAINER_ERROR_INDEX The given position is out of bounds.

Returns: A negative error code if an error occurs, or a positive value if the operation
succeeded.

Example:

Vector *AL;

double d = 6.7;

int r = iVector.ReplaceAt(AL,2,&d);
if (r < 0) { /* Error handling */ }

Reverse
int (xReverse) (Vector *AL);

Description: Reverses the order of the elements of the given Vector.

Errors:

CONTAINER_ERROR_BADARG The array pointer is NULL .
CONTAINER_ERROR_READONLY The array is read only.
CONTAINER_ERROR_NOMEMORY Not enough memory for intermediate storage available
Returns: A negative error code if an error occurs, or a positive value if the operation
succeeded.

Save
int (*Save) (Vector *AL, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given list are saved into the given stream. If the save
function pointer is not NULL , it will be used to save the contents of each element and will
receive the arg argument passed to Save, together with the output stream. Otherwise a
default save function will be used and arg will be ignored. The output stream must be
opened for writing and must be in binary mode.

Errors:

CONTAINER_ERROR_BADARG The array pointer or the stream pointer are NULL . EOF
A disk input/output error occurred.

86

4.3. The Vector interface: iVector

Returns: A positive value if the operation completed, a negative value or EOF other-
wise.
Example:

Vector *AL;

FILE *outFile;

if (iVector.Save(AL,outFile,NULL,NULL) < 0) {
/* Handle error here */

3

SetCapacity
int (*SetCapacity) (Vector *AL,size_t newCapacity);

Description: Resizes the given Vector to a new value. The new capacity means there
will be that number of elements allocated, avoiding costly resizing operations when new
elements are added to the Vector. If the number given is less than the number of elements
present in the array, elements are discarded from the end of the array.

Errors:

CONTAINER_ERROR_BADARG The Vector pointer is NULL .
CONTAINER_ERROR_-READONLY The array is read only.

Returns: A positive value if resizing was completed, a negative error code otherwise.

SetCompareFunction

CompareFunction (*SetCompareFunction) (Vector *AL,
CompareFunction f);

Description: if the f argument is non NULL , it sets the array comparison function to
f.

Errors:

CONTAINER_ERROR_BADARG The array pointer is NULL .
CONTAINER_.ERROR_READONLY The array is read only and the function argument is
not NULL .

Returns: The old value of the comparison function.

Example:

ErrorFunction fn,newfn;
Vector *AL;
fn = iVector.SetErrorFunction(AL,newfn);

SetDestructor

DestructorFunction (*SetDestructor) (Vector *v,DestructorFunction fn);

87

4. THE CONTAINERS

Description: Sets the destructor function to its given argument. If the function argu-
ment is NULL nothing is changed and the call is interpreted as a query since the return
value is the current value of the destructor function. If the vector argument is NULL ,
the result is NULL .

Returns: The old value of the destructor.

SetErrorFunction

ErrorFunction (*SetErrorFunction) (Vector *V,ErrorFunction);

Description: Replaces the current error function for the given list with the new error
function if different from NULL .

Errors:

CONTAINER_ERROR_BADARG The list pointer is NULL .
CONTAINER_ERROR_READONLY The list is read only and the function argument is not
NULL .

Returns: The old value of the error function or NULL if there is an error.

Size
size_t (*Size) (Vector *AL);

Description: Returns the number of elements stored in the array.
Example:

Vector *AL;
size_t elem = iVector.Size(AL);

Sizeof
size_t (*Sizeof) (Vector *AL);

Description: Returns the total size in bytes of the list, including the header, and all
data stored in it. If the argument is NULL , the size of the header only is returned.
Returns: The number of bytes used by the list or the size of the Vector header if the
argument is NULL .

Example:

Vector *AL;
size_t size = iVector.Sizeof (AL);

Sort

int Sort(Vector *AL);

88

4.3. The Vector interface: iVector

Description: Sorts the given array using the its comparison function. The order of the
original array is destroyed. You should copy it if you want to preserve it.

Returns: A positive number if sorting succeeded, a negative error code if not.
Example:

Vector *AL;
if (iVector.Sort(AL) < 0) { /* Error handling */ }

89

4. THE CONTAINERS

4.4 The bit-string container: iBitString

Create/CreateWithAllocator
Init/InitWithAllocator

StringToBitString
Life cycle - - -
ObjectToBltStrmg_
Clear
Finalize
Add
Managing
elements
RemoveAt
Set
SetElement And
AndAssign
GetElement N "
Retrieving o _
data GetBits NotAssign
boolean Or
Bitstringsl — operations OrA55|gn_
Queries Xor
XorAssign

newlterator

GetFirst
GetNext

GetCurrent

GetPrevious

deletelterator

IndexOf
Contains

bitBitstr
PopulationCount
BitBlockCount

LeftShift
RightShift

Co

Shifts

Whole
container
operations

Insertin

LessEqual

Reverse

BitString vocabulary. Specific items are in bold.
90

4.4.1

4.4. The bit-string container: iBitString

A bit string is a derivation from the Vector container, specialized to hold a sequence
of bits. It is a sequential container designed to save space in the storage of boolean
values !

The interface

typedef struct {
int (*Add) (BitString *BitStr,int);
BitString *(*And) (BitString *bsl,BitString *bsr);
int (*AndAssign) (BitString *bsl,BitString *bsr);
int (xAppend) (BitString *left,BitString *right);
int (*Apply) (BitString *B,int (*Applyfn) (int ,void *),void *);
uintmax_t (*BitsBlockCount) (BitString *Db);
int (*Clear) (BitString *BitStr);
int (*Contains) (BitString *B,BitString *str,void *ExtraArgs);
BitString *(*Copy) (BitString *);
int (*CopyBits) (BitString *b, unsigned char *buffer);
BitString *(*Create) (size_t bitlen);
int (*deleteIterator) (Iterator *);
int (*Equal) (BitString *bsl,BitString *bsr);
int (*Erase) (BitString *BitStr,bool bit);
int (*EraseAt) (BitString *BitStr,size_t idx);
int (*Finalize) (BitString *BitStr);
unsigned char *(xGetBits) (BitString *b);
size_t (*GetCapacity) (BitString *BitStr);
int (*GetElement) (BitString *BitStr,size_t idx);
size_t GetElementSize(BitString *b);
unsigned (*GetFlags) (BitString *BitStr);
BitString *(*GetRange) (BitString *b,size_t start,size_t end);
int (*Index0f) (BitString *B,bool SearchedBit);
BitString *(*Init) (BitString *BitStr,size_t bitlen);
size_t (*Insert) (BitString *BitStr,bool bit);
size_t (*InsertAt) (BitString *BitStr,size_t idx,bool bit);
int (xLeftShift) (BitString *bs,size_t shift);
BitString *(*Load) (FILE *stream, ReadFunction Fn,void *arg);
int (xLessEqual) (BitString *bsl,BitString *bsr);
Iterator *(xnewlterator) (BitString *);
BitString *(*Not) (BitString *bsl);
int (*NotAssign) (BitString *bsl);
BitString *(*0bjectToBitString) (unsigned char *p,size_t size);
BitString *(*0r) (BitString *left,BitString *right);

! The equivalent in C# is the BitArray class in System.Collections. In Java the equivalent is
the BitSet class.

91

4.4.2

THE CONTAINERS

int (*OrAssign) (BitString *bsl,BitString *bsr);
int (*Pop) (BitString *BitStr);
uintmax_t (*PopulationCount) (BitString *b);
size_t (*#Print) (BitString *b,size_t bufsiz,unsigned char *out);
int (*Push) (BitString *BitStr,int val);
int (*ReplaceAt) (BitString *BitStr,size_t idx,bool newval);
BitString *(*Reverse) (BitString *b);
int (*RemoveAt) (BitString *bitStr,size_t idx);
int (*RightShift) (BitString *bs,size_t shift);
int (xSave) (BitString *B,FILE *out, SaveFunction Fn,void *arg);
int (*Set) (BitString *B,size_t start,size_t stop,bool newval);
int (¥SetCapacity) (BitString *BitStr,size_t newCapacity);
int (*SetElement) (BitString *bs,size_t position,bool b);
ErrorFunction *(*SetErrorFunction) (BitString *,ErrorFunction);
unsigned (*SetFlags) (BitString *BitStr,unsigned flags);
size_t (*Size) (BitString *BitStr);
size_t (*Sizeof) (BitString *b);

void *ExtraArgs,size_t *result);
BitString *(*StringToBitString) (unsigned char *);
BitString *(*Xor) (BitString *bsl,BitString *bsr);
int (*XorAssign) (BitString *bsl,BitString *bsr);

} BitStringInterface;

API

Contrary to the other containers presented above like iList or iVector, bitstring re-
ceives and returns not pointers but values of bits. This is an important difference and

makes for significant changes in the interface of many functions.

Other functions like Apply do not make much sense for bits and are provided just
to be coherent in the obverall design of the library. Obviously a function that needs a
function call per bit is not very fast. The function GetElementSize is provided for com-
patibility purposes only and returns always 1. Actually it should return 0.125 assuming

8 bits bytes.

Add

int (*Add) (BitString *BitStr,int);

Description: Adds a bit at the end of the given bitstring.

Errors:

CONTAINER_ERROR_BADARG The given pointer is NULL .
CONTAINER_ERROR_NOMEMORY There is no memory to carry out the operation.
Returns: A positive number if the bit is added or a negative error code otherwise.
Example:

92

4.4.

The bit-string container: iBitString

#include "containers.h"
int main(int argc,char *argv[])

{
size_t 1i;
BitString *b;
unsigned char buf [512];
b = iBitString.Create(32);
for (i=0; i<32;i++)

iBitString.Add(b,i&1);

iBitString.Print(b,sizeof (buf) ,buf);
printf ("%s\n",buf);
return O;

}

OUTPUT:

1010 1010 1010 1010 1010 1010 1010 1010

And

BitString *(*And) (BitString *left,BitString *right);

Description: Makes a logical AND between the left and right arguments. The result
is returned in a new bit string, both arguments are not modified. The length of the
resulting bit string is the smallest length of both strings.

Returns: A pointer to the newly allocated result or NULL in case of error.

Errors:
CONTAINER_ERROR_BADARG One of both bitstring pointers are NULL .
CONTAINER_ERROR_.NOMEMORY Not enough memory is available to complete the op-
eration.
Example:

#include "containers.h"
int main(int argc,char *argv[])

{

size_t 1i;
BitString *b,*c,*d;
unsigned char buf[512];

b iBitString.Create(32);

c = iBitString.Create(32);

for (i=0; i<32;i++) {
iBitString.Add(b,i&1);
iBitString.Add(c,i<16);

93

4. THE CONTAINERS

iBitString.Print (b, sizeof (buf) ,buf) ;

printf ("%s\n",buf);
printf (" AND\n");

iBitString.Print(c,sizeof (buf) ,buf);

printf ("%s\n",buf) ;
printf ("=\n");
d = iBitString.And(b,c);

iBitString.Print(d,sizeof (buf) ,buf) ;

printf ("%s\n",buf) ;
return O;
+
QUTPUT:
1010 1010 1010 1010 1010 1010
AND
0000 0000 0000 0000 1111 1111

0000 0000 0000 0000 1010 1010

1010 1010

1111 1111

1010 1010

AndAssign

int (*AndAssign) (BitString *left,BitString *right);

Description: Makes a logical AND of its two arguments and assigns the result into the
left bit string. If the bit strings have a different length, the operation uses the bits of the
right argument until either the end of the right argument or the end of the destination

string is reached.

Returns: A positive number or a negative error code in case of error.

Errors:

CONTAINER_ERROR_BADARG One or both arguments are NULL .

Example:

#include "containers.h"
int main(int argc,char *argv([])
{

size_t 1i;

BitString *b,*c;

unsigned char buf [512];

b iBitString.Create(32);

c = iBitString.Create(32);

for (i=0; i<32;i++) {
iBitString.Add(b,i&1);
iBitString.Add(c,i<16);

94

4.4. The bit-string container: iBitString

iBitString.Print(b,sizeof (buf) ,buf);
printf ("%s\n",buf);

printf (" AND\n");
iBitString.Print(c,sizeof (buf) ,buf);
printf ("%s\n",buf) ;

printf ("=\n");
iBitString.AndAssign(b,c);
iBitString.Print(b,sizeof (buf) ,buf);
printf ("%s\n",buf) ;

return O;
}
OUTPUT:
1010 1010 1010 1010 1010 1010 1010 1010
AND

0000 0000 0000 0000 1111 1111 1111 1111

0000 0000 0000 0000 1010 1010 1010 1010

BitBlockCount
uintmax_t (*BitBlockCount) (BitString *b);

Description: Computes the number of blocks where 1 or more bits are set.
Returns: The number of blocks of set bits.

Errors:

CONTAINER_ERROR_BADARG The given argument is NULL .

Example:

#include "containers.h"
int main(int argc,char *argv([])
{
size_t 1i;
BitString *b,*c,*d;
unsigned char buf [512];

b = iBitString.Create(32);

c = iBitString.Create(32);

for (i=0; i<32;i++) {
iBitString.Add(b,i&1);
iBitString.Add(c,i<16);

}

iBitString.Print(b,sizeof (buf) ,buf);

printf ("%s BitBlockCount=%1d\n",buf,iBitString.BitBlockCount (b)) ;
iBitString.Print(c,sizeof (buf) ,buf);

95

4. THE CONTAINERS

printf ("%s BitBlockCount=%1d\n",buf,iBitString.BitBlockCount(c));
return O;

}

OUTPUT:

1010 1010 1010 1010 1010 1010 1010 1010 BitBlockCount=16

0000 0000 0000 0000 1111 1111 1111 1111 BitBlockCount=1

CopyBits
int (*CopyBits) (BitString *b, unsigned char *buffer);

Description: Copies the bits into the given buffer. The size of the buffer is at least:
1+iBitstring.GetSize (bitstr)/8

Errors:
CONTAINER_ERROR_BADARG Either the bitstring or the buffer pointer are NULL .
Returns: A positive number if the bits are copied, a negative error code otherwise.

GetBits

unsigned char *(*GetBits) (BitString *b);

Description: Returns a pointer to the bits stored in the bitstring. If the string is
read-only the result is NULL . The size of the needed buffer can be calculated according
to:

BitString *bitstr;
size_t bytesize;
bytesize = 1+iBitString.GetSize(bitstr)/CHAR_BIT;

Errors:
CONTAINER_ERROR_BADARG The bit string pointer is NULL .
CONTAINER_ERROR_READONLY The bitstring is read-only.

GetRange

BitString *(*GetRange) (BitString #*b,size_t start,size_t end);

Description: Returns all the bits between the start (inclusive) and the end (inclusive)
indices. If end is smaller than start, start and end are exchanged. If end is greater than
the size of the bit string, all elements up to the last one are returned. If both start and
end are out of range, an error is issued and the result is NULL .

Returns: A new bit string with the specified contents.

Errors:

CONTAINER_ERROR_BADARG The given argument is NULL .

LeftShift

96

4.4. The bit-string container: iBitString

int (*LeftShift) (BitString *bs,size_t shift);

Description: Shifts left the given bit string by the specified number of bits. New bits
introduced by the right are zeroed.

Errors:

CONTAINER_ERROR_BADARG The bit string pointer is NULL .

Returns: An integer bigger than zero if successful, a negative error code otherwise.

Not

BitString *(*Not) (BitString *src);

Description: Makes a logical NOT of its argument. The result is returned in a new bit
string. The length of the resulting bit string is the same as the length of the argument.
Returns: A pointer to the newly allocated bit string or NULL in case of error.
Errors:

CONTAINER_ERROR_.BADARG The argument is NULL .
CONTAINER_ERROR.NOMEMORY Not enough memory is available to complete the op-
eration.

NotAssign

int (*NotAssign) (BitString *src);

Description: Makes a logical NOT of its argument and assigns the result into it.
Returns: A pointer to its argument or NULL in case of error.

Errors:

CONTAINER_ERROR_BADARG The argument is NULL .

Returns: A positive number or a negative error code in case of error.

ObjectToBitString

BitString *(*0bjectToBitString) (unsigned char *p,size_t size);

Description: The bits starting by the given pointer are copied into a new bit string
using the size (in bytes) indicated by the second parameter size.

Errors:

CONTAINER_ERROR_BADARG The pointer is NULL

CONTAINER_.ERROR.NOMEMORY There is not enough ressources to finish the operation.
Returns: A new bit string or NULL if there is an error.

Or

BitString *(*0r) (BitString *left,BitString *right);

97

4. THE CONTAINERS

Description: Makes a logical OR between the left and right arguments. The result
is returned in a new bit string, both arguments are not modified. The length of the
resulting bit string is the smallest length of both strings.

Errors:

CONTAINER_ERROR_BADARG One of both bitstring pointers are NULL .
CONTAINER_ERROR.NOMEMORY Not enough memory is available to complete the op-
eration.

OrAssign
int (*OrAssign) (BitString *left,BitString *right);

Description: Makes a logical OR of its two arguments and assigns the result into the
left bit string. If the bit strings have a different length, the operation uses the bits of the
right argument until either the end of the right argument or the end of the destination
string is reached.

Errors:

CONTAINER_ERROR_BADARG One or both arguments are NULL .

Returns: A positive number or a negative error code in case of error.

PopulationCount
uintmax_t (*PopulationCount) (BitString *b);

Description: Computes the number of 1 bits in the bit string.
Returns: The number of set bits in the string.

Errors:

CONTAINER_ERROR_BADARG The given argument is NULL .

Print

size_t (*#Print) (BitString *b,size_t bufsiz,unsigned char *out);

Description: Prints into the given buffer the contents of the bitstring b without exceed-
ing the length of the given buffer bufsiz. The bits will be grouped into 4 bits separated
by a space. Each group of 8 bits will be separated from the rest by two spaces.
Errors:

CONTAINER_ERROR_BADARG . The bit string pointer is NULL .

Returns: The number of characters written to the output string, including the termi-
nating zero. If the output string pointer is NULL , it returns the number of characters
that would be needed to print the contents of the bitstring.

Reverse
BitString *(*Reverse) (BitString *b);

98

4.4. The bit-string container: iBitString

Description: The bit sequence of the argument is reversed
Returns: A new bit string containing the reversed argument.
Errors:

CONTAINER_ERROR_-BADARG The given argument is NULL .
Example:

#include "containers.h"
int main(int argc,char *argv([])
{

size_t pos;

BitString *b,*c;

unsigned char buf [512];

if (arge < 2) {
fprintf (stderr,"Usage: %s <bitstring>\n",argv[0]);
return 1;
}
b = iBitString.StringToBitString(argv[1]);
iBitString.Print(b,sizeof (buf) ,buf);
printf ("Reversing bits of %s\n",buf);
c = iBitString.Reverse(b);
iBitString.Print(c,sizeof (buf) ,buf);
printf ("%s\n",buf) ;
return O;
}
OUTPUT :
Reversing bits of 1111 1100 0000 1111 1111 1111
1111 1111 1111 0000 0011 1111

RemoveAt
int (*RemoveAt) (BitString *bitStr,size_t idx);

Description: Removes the bit at the specified position. If the position is greater than
the length of the string the last position will be used.

Errors:

CONTAINER_ERROR_.BADARG The given bit string pointer is NULL

Returns: A positive number when the bit was removed, a negative error code otherwise.
If the bit string is empty the result is zero.

Example:

#include "containers.h"
int main(int argc,char *argv([])
{

size_t pos;

99

4. THE CONTAINERS

BitString *b;
unsigned char buf[512];

if (argc < 3) {
fprintf (stderr,"Usage: %s bitstring pos\n",argv[0]);
return 1;
}
b = iBitString.StringToBitString(argv([1]);
pos = atoi(argv([2]);
iBitString.Print(b,sizeof (buf) ,buf);
printf ("Erasing bit %d of %s\n",pos,buf);
iBitString.EraseAt (b,pos);
iBitString.Print(b,sizeof (buf) ,buf) ;
printf ("%s\n",buf) ;
return O;
}
QUTPUT:
Erasing bit 2 of 11 1000 1110 0011 1000
1 1100 0111 0001 1100

Set

int (*Set) (BitString #*B,size_t start,size_t stop,bool newvalue);

Description: Sets the range of bits delimiteded by its start and end arguments to the
value given by its newvalue argument. If the new value is different than zero a '1’ bit is
written, otherwise the bit is set to zero. If the stop argument is bigger than the length
of the bitstring, the end of the string will be used.

CONTAINER_ERROR_BADARG The bit string pointer is NULL.
CONTAINER_ERROR_INDEX The start argument is bigger or equal to the length of the
bitstring.

StringToBitString
BitString *(*StringToBitString) (unsigned char *);

Reads a bitstring from a character string. The character string should contain only the
characters '17, ’0’, space and tab.

Errors:

CONTAINER_ERROR_BADARG The character string pointer is NULL .

Returns: A pointer to the new bitstring or NULL if there was an error or the given
character string did not contain any 1" or '0’.

Xor

BitString *(*Xor) (BitString *left,BitString *right);

100

4.4. The bit-string container: iBitString

Description: Makes a logical XOR between the left and right arguments. The result
is returned in a new bit string, both arguments are not modified. The length of the
resulting bit string is the smallest length of both strings.

Returns: A pointer to its result or NULL in case of error.

Errors:

CONTAINER_ERROR_BADARG One of both bitstring pointers are NULL .
CONTAINER_ERROR.NOMEMORY Not enough memory is available to complete the op-
eration.

XorAssign
int (*XorAssign) (BitString *left,BitString *right);

Description: Makes a logical XOR of its two arguments and assigns the result into the
left bit string. If the bit strings have a different length, the operation uses the bits of the
right argument until either the end of the right argument or the end of the destination
string is reached.

Returns: A positive number or a negative error code in case of error.

Errors:

CONTAINER_-ERROR_BADARG Its argument is NULL .

101

4.5

4.5.1

4.

THE CONTAINERS

The string collection container: iStringCollection

A string collection is a derivation from the Vector container, specialized to hold character
strings.

The interface

typedef struct {

102

int (*Add) (StringCollection *SC,char *newval);
int (*AddRange) (StringCollection *SC,char **newvalues);
int (*Apply) (StringCollection *SC,
int (*Applyfn) (char *,void * ExtraArg),
void *ExtraArg);
Vector *(*CastToArray) (StringCollection *SC);
int (*Clear) (StringCollection *SC);
int (*Contains) (StringCollection *SC,char *str);
StringCollection *(*Copy) (StringCollection *SC);
char *x(*CopyTo) (StringCollection *SC);
StringCollection *(*Create) (size_t startsize);
StringCollection *(*CreateWithAllocator) (size_t startsize,
ContainerMemoryManager *allocator);
StringCollection *(*CreateFromFile) (unsigned char *fileName);
int (*deletelterator) (Iterator x*);
int (*Equal) (StringCollection *SC1,StringCollection *SC2);
int (*Erase) (StringCollection *SC,char *);
int (*EraseAt) (StringCollection *SC,size_t idx);
int (*Finalize) (StringCollection *SC);
size_t (#FindFirstText) (StringCollection *SC,char *text);
size_t (*#FindNextText) (StringCollection *SC,char *txt,
size_t start);
Vector *(*FindTextPositions) (StringCollection *SC,char *text);
Vector *(*FindTextPositions) (StringCollection *SC,char *text);
ContainerMemoryManager *(GetAllocator) (StringCollection *AL);
int (*GetCapacity) (StringCollection *SC);
char *(*GetElem ent) (StringCollection *SC,size_t idx);
unsigned (*GetFlags) (StringCollection *SC);
int (*Index0f) (StringCollection *SC,
char *SearchedString,size_t *result);
StringCollection *(*InitWithAllocator) (StringCollection *result,
size_t startsize,
ContainerMemoryManager *allocator);
StringCollection *(*Init) (StringCollection *result,
size_t startsize);
int (*Insert) (StringCollection *SC,char *);

4.5.2

4.5. The string collection container: iStringCollection

int (*InsertAt) (StringCollection *SC,size_t idx,char *newval);
int (*InsertIn) (StringCollection *source, size_t idx,
StringCollection *newData);
StringCollection *(*Load) (FILE *stream,
ReadFunction readFn,void *arg);
int (*#Mismatch) (const Vector *al,const Vector *a2,
size_t *result);

Iterator *(*newlterator) (StringCollection *SC);
size_t (*¥PopBack) (StringCollection *SC,char *buffer,size_t buflen);
int (*PushBack) (StringCollection *SC,char *str);
int (*ReplaceAt) (StringCollection *S,size_t idx,char *newV);
int (*SetCapacity) (StringCollection *SC,size_t newCapacity);
StringCompareFn (*SetCompareFunction) (StringCollection *SC,
StringCompareFn StrCmp);
ErrorFunction (*SetErrorFunction) (StringCollection *S,
ErrorFunction Fn);
unsigned (*SetFlags) (StringCollection *SC,unsigned flags);
size_t (*Size) (StringCollection *SC);
size_t (*Sizeof) (StringCollection *SC);
int (*Save) (StringCollection *SC,
FILE *stream, SaveFunction saveFn, void *arg);
int (*Sort) (StringCollection *SC);
int (xWriteToFile) (StringCollection *SC,unsigned char *fileName);
} StringCollectionInterface;

extern StringCollectionInterface iStringCollection;

API

Most of the functions present in the interface are exactly like the functions in Vector.
Only those that differ will be documented here.

AddRange

int (*AddRange) (StringCollection *SC,size_t n,char *datal]);

Description: Adds each string of the array of string pointers at the end of the container.
It is assumed that “data” points to a contiguous array of string pointers whose size is
given by the "n” parameter. Returns a value greater than zero if the addition completed
successfully, a negative error code otherwise. If n is zero nothing is done and no errors
are issued, even if the array pointer or the data pointer are NULL .

Errors:

CONTAINER_ERROR_BADARG The StringCollection pointer or the data pointers are
NULL .

103

4. THE CONTAINERS

CONTAINER_.ERROR_READONLY The list is read-only. No modifications allowed.
CONTAINER_ERROR.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation completed, negative error code otherwise.
Example:

StringCollection *SC;

char *datal] = { "One","two,"three"};

int result = iStringCollection.AddRange(SC,3,data);
if (result < 0) { /* Error handling */ }

CastToArray
Vector *(*CastToArray) (StringCollection *SC);

Description: Converts a string collection into an vector.

Errors:

CONTAINER_ERROR_BADARG The StringCollection pointer is NULL .
CONTAINER_ERROR_NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation completed, negative error code otherwise.

CreateFromFile

StringCollection *(*CreateFromFile) (unsigned char *fileName);

Description: Reads the given text file and stores each line in a string of the collection.
The end of line characters are discarded.

Errors:

CONTAINER_ERROR_BADARG The fileName pointer is NULL .
CONTAINER_ERROR.NOMEMORY Not enough memory to complete the operation.
CONTAINER_ERROR_NOENT The file doesn’t exist or can’t be opened for reading.
Returns: A pointer to a new string collection with the contents of the file. If an error
occurs the result is NULL and the current error function (in the iError interface) is called.

FindFirstText

size_t (¥FindFirstText) (StringCollection *SC,char *text);

Description: Finds the first occurrence of the given text in the string collection.
Errors:

CONTAINER_ERROR_.BADARG One or both arguments are NULL .

Returns: The zero based index of the line that contains the given text or the constant
CONTAINER_ERROR_NOTFOUND if the text is not found.

FindNextText

size_t (*#FindNextText) (StringCollection *SC,char *txt,size_t start);

104

4.5. The string collection container: iStringCollection

Description: Starts searching for the given text at the specified line.

Errors:

CONTAINER_ERROR_BADARG The StringCollection or the text pointer are NULL .
Returns: The one based index of the line that contains the text or zero if the text is
not found or an error occurred.

FindTextPositions

Vector *(*FindTextPositions) (StringCollection *SC,char *text);

Description: Searches all occurrences of the given text in the given string collection.
Errors:

CONTAINER_ERROR_BADARG The StringCollection or the text pointer are NULL .
CONTAINER_ERROR_NOMEMORY Not enough storage for holding the result array list.
Returns: An array list containing a pair of integers for each occurrence containing the
zero based position of the line where the text was found and a second number indicating
the character index within the line where the searched text occurs. The result is NULL
if there wasn’t any occurrences of the searched text in the string collection or an error
was detected.

Init

StringCollection *(*Init) (StringCollection *result, size_t startsize);

Description: Initializes the given string collection to contain at least the number of
strings given. Uses the current memory manager.

Errors:

CONTAINER_ERROR.NOMEMORY There is no more memory left to complete the opera-
tion.

CONTAINER_.ERROR_BADARG The string collection pointer is NULL

Returns: A pointer to the initialized string collection or NULL if an error occurs.

InitWithAllocator

StringCollection *(*InitWithAllocator) (StringCollection *result,
size_t startsize,
ContainerMemoryManager *allocator);

Description: Initializes the given string collection to contain at least the number of
strings given. Uses the given memory manager.

Errors:

CONTAINER_ERROR_NOMEMORY There is no more memory left to complete the opera-
tion.

CONTAINER_ERROR_BADARG The string collection pointer is NULL

Returns: A pointer to the initialized string collection or NULL if an error occurs.

InsertIn

105

4. THE CONTAINERS

int (*InsertIn) (StringCollection *dst, size_t pos,
StringCollection *newData);

Description: Inserts the given StringCollection into the destination StringCollection
at the given position. If the position is greater than the actual length of the string
collection the new data will be inserted at the end.

Errors:

CONTAINER_ERROR_BADARG The source or destination pointers are NULL .
CONTAINER_ERROR_READONLY The destination is read only.

Example:

#include <containers.h>
static void PrintStringCollection(StringCollection *AL)
{
size_t 1i;
printf ("Count %ld, Capacity %1ld\n",
(long)iStringCollection.Size(AL),
(long)iStringCollection.GetCapacity(AL));
for (i=0; i<iStringCollection.Size(AL);i++) {
printf("%s ",iStringCollection.GetElement (AL,i));
}
printf("\n");

static void FillStringCollection(StringCollection * AL,int start)
{

size_t 1i;

char buf [256];

for (i=0; i<10;i++) {
double d = it+start;
sprintf (buf,"%g",d);
iStringCollection.Add (AL,buf) ;

}

+

int main(void)

{
StringCollection *AL = iStringCollection.Create(10);
StringCollection *AL1 =iStringCollection.Create(10);
FillStringCollection(AL,0);
FillStringCollection(AL1,100);
iStringCollection.InsertIn(AL,5,AL1);
PrintStringCollection(AL) ;
return O;

+

106

4.5. The string collection container: iStringCollection

The example creates two string collections, fills them with the string representation of
the numbers from 0 to 9 and from 100 to 109, then inserts the second collection into the
first one at position 5.

OUTPUT:

Count 20, Capacity 20
01234 100 101 102 103 104 105 106 107 108 109 5 6 7 8 9

Mismatch

int (*Mismatch) (const StringCollection *al,
const StringCollection *a2,
size_t *mismatch);

Description: Returns the index of the first element that is different when compar-
ing both collections in the passed pointer mismatch. If one is shorter than the other
the comparison stops when the last element from the shorter array is compared. The
comparison also stops when the first difference is spotted.

Errors:

CONTAINER_ERROR_BADARG Any of the arguments is NULL .

Returns: If a mismatch is found the result is greater than zero and the mismatch
argument will contain the index of the first element that compared unequal. This will
be always the case for arrays of different length.

If both arrays are the same length and no differences are found the result is zero
and the value pointed to by the mismatch argument is one more than the length of the
arrays.

If an error occurs, a negative error code is returned. The mismatch argument contains
zZero.

Example:

#include "containers.h"
char *table[] = {"String 1", "String 2","String 3","String 4",};

int main(void)

{
size_t idx;
StringCollection *sc = iStringCollection.Create(4);
StringCollection *sc2;
iStringCollection.AddRange (sc,sizeof (table)/sizeof (table[0]) ,table);
sc2 = iStringCollection.Copy(sc);
iStringCollection.ReplaceAt(sc,2,"String456") ;
iStringCollection.Mismatch(sc,sc2,&idx);
printf ("String collections differ at position %d\n",idx);
}
OUTPUT:

107

4. THE CONTAINERS

String collections differ at position 2

PopBack
size_t (*PopBack) (StringCollection *SC,char *buffer,size_t buflen);

Description: If the string collection is not empty, it will copy at most buflen characters
into the given buffer. If the buffer pointer is NULL or the length of the buffer is zero it
will return the length of the element that would be popped.

Errors:

CONTAINER_ERROR_BADARG The StringCollection pointer is NULL .

Returns: Zero if there was an error or the string collection is empty. Otherwise returns
the length of the string stored at the position to pop, including the terminating zero.

WriteToFile

int (*WriteToFile) (StringCollection *SC,unsigned char *fileName);

Description: Writes the contents of the given string collection into a file with the given
name. If the collection is empty an empty file is created. The resulting file contains a
line for each string in the collection.

Errors:

CONTAINER_ERROR_.BADARG The StringCollection pointer or the fileName are NULL .
Returns: A positive number if the operation completes, or a negative error code oth-
erwise. If the collection is empty the result is zero.

108

4.6. The dictionary container: iDictionary

4.6 The dictionary container: iDictionary

Create/
CreateWithAllocator

Clear
Finalize

Life

Add
Managing
elements

Insert

Retrieving

data CopyElement

GetElement
GetKeys

Searching Contains

GetAllocator GetElementSize

Size
Sizes Sizeof

GetFlags
SetFlags

Queries

Dictionary

Flags

newlterator
GetFirst

Ilterators

Apply GetNext
GetCurrent
GetPrevious
Save

Serializin deletelterator

Whole
container CastToArray

operations Copy
Insertln

The dictionary vocabulary.

109

4.6.1

4.

THE CONTAINERS

A dictionary is an associative container that associates a text key with a piece of

data. It can be implemented by means of a hash table that uses a hash function to map
the key into a restricted integer range, used in a table.

The dictionary interface

typedef struct _Dictionary Dictionary;

typedef struct {

110

int (*Add) (Dictionary *Dict,
const unsigned char *key,void *Data);
int (*Apply) (Dictionary *Dict,
int (*Applyfn) (const unsigned char *Key,
const void *data,void *arg),
void *arg);
Vector *(*CastToArray) (Dictionary *);
int (*Clear) (Dictionary *Dict);
Dictionary *(*Copy) (Dictionary *dict);
Dictionary *(*Create) (size_t ElementSize,size_t hint);
Dictionary *(*CreateWithAllocator) (size_t elementsize,size_t hint,
ContainerMemoryManager *allocator);
int (xdeletelterator) (Iterator *);
int (*Equal) (Dictionary *dictl,Dictionary *dict2);
int (*Erase) (Dictionary *Dict,const unsigned char *);
int (*Finalize) (Dictionary *Dict);
size_t (*GetElementSize) (Dictionary *d);
ContainerMemoryManager *(*GetAllocator) (Dictionary *Dict);
const void *(*GetElement) (const Dictionary *Dict,
const unsigned char *Key);
unsigned (*GetFlags) (Dictionary *Dict);
StringCollection *(*GetKeys) (Dictionary *Dict);
Dictionary *(*Init)(Dictionary *Dict,size_t elemsize,size_t hint);
Dictionary *(*InitWithAllocator) (Dictionary *Dict,
size_t elementsize, size_t hint,
ContainerMemoryManager *allocator);
int (*Insert) (Dictionary *Dict,const unsigned char #*Key,void *Value)
int (*InsertIn) (Dictionary *dst,Dictionary *src);
Dictionary * (*Load) (FILE *stream, ReadFunction readFn, void *arg);
Iterator *(*newlterator) (Dictionary *dict);
int (*Save) (Dictionary *Dict, FILE *stream,
SaveFunction Fn, void *arg);
DestructorFunction (*SetDestructor)(Dictionary *dict,
DestructorFunction fn);
ErrorFunction (*SetErrorFunction) (Dictionary *Dict,ErrorFunction f);

4.6.2

4.6. The dictionary container: iDictionary

unsigned (*SetFlags) (Dictionary *Dict,unsigned flags);
size_t (*Size) (Dictionary *Dict);
size_t (*Sizeof) (Dictionary *dict);

} DictionaryInterface;

The API

Add
int (*Add) (Dictionary *Dict,char *key,void *data);

Description: Adds the given element to the container using the given “key” string.
It is assumed that “data” points to a contiguous memory area of at least ElementSize
bytes. Both the key and the data are copied into the container.

If an element exists with the given key, its contents are replaced with the new data.
For a different behavior use Insert or Replace.
Errors:
CONTAINER_ERROR_BADARG The dictionary, the key or the data pointers are NULL .
CONTAINER_ERROR_-READONLY The dictionary is read-only. No modifications allowed.
CONTAINER_ERROR.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation added a new element, zero if the data was
written into an existing element, or a negative error code if an error occurred.
Example:

Dictionary *dict;

double data = 4.5;

int result = iDictionary.Add(dict,"Interest rate",&data);
if (result < 0) { /* Error handling */ }

Apply

int (*Apply) (Dictionary #*Dict,
int (Applyfn) (const unsigned char x*key,
void *data,
void *extraArg),
void *extraArg);

Description: Will call the given function for each element of the array. The first
argument of the callback function receives they key ,the second is a pointer to the element
of the Dictionary. The third argument of the callback is the “extraArg” argument that
the Apply function receives and passes to the callback. This way some context can be
passed to the callback, and from one element to the next. Note that the result of the
callback is not used. This allows all kinds of result types to be accepted after a suitable
function type cast. If the dictionary is read-only, a copy of the element will be passed
to the callback function.

111

4. THE CONTAINERS

Errors:

CONTAINER_ERROR_BADARG Either the dictionary pointer or Applyfn are NULL .
CONTAINER_ERROR_NOMEMORY The dictionary is read-only and there is no more mem-
ory to allocate the buffer to copy each element.

Example:

static int print(const char x*key,
void *pElement,
void *pResult)

{
double *p = pElement;
printf ("%s: %g\n",key,*p);
return 1;

b

int main(void) {
Dictionary *dict = iDictionary.Create(sizeof (double),5);
double d = 2;
iDictionary.Add(dict,"First item",&d);
d = 3;
iDictionary.Add(dict,"Second item",&d);
iDictionary.Apply(dict,print,NULL);
return O;

}
Output should be:

First item: 2
Second item: 3

Clear

int (*Clear) (Dictionary *dict);

Description: Erases all stored data and releases the memory associated with it. The
dictionary header is not destroyed, and its contents will be the same as when it was
initially created. It is an error to use this function when there are still active iterators
for the container.

Returns: The result is greater than zero if successful, or an error code if an error occurs.
Errors:

CONTAINER_ERROR_BADARG The vector pointer is NULL .
CONTAINER_ERROR_READONLY The vector is read only.

Example:

Dictionary *Dict;
int m = iDictionary.Clear(Dict);

112

4.6. The dictionary container: iDictionary

Contains
int (*Contains) (Dictionary #*Dict,const unsigned char *Key);

Description: Returns one if the given key is stored in the dictionary, zero otherwise.
If an error occurs it returns a negative error code.

Errors:

CONTAINER_ERROR_BADARG Either Dict or Key are NULL .

Example:

Dictionary *dict;
int r = iDictionary.Contains(dict,"Item 1");

Copy
Dictionary *(*Copy) (Dictionary *Dict);

Description: A shallow copy of the given dictionary is performed. Only ElementSize
bytes will be copied for each element. If the element contains pointers, only the pointers
are copied, not the objects they point to. The new memory will be allocated using the
given list’s allocator.

Errors:

CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

CONTAINER_ERROR_BADARG The given vector pointer is NULL .

Example:

Dictionary *newDict,*01d;
newDict = iDictionary.Copy(01d) ;

Create

Dictionary *(*Create) (size_t ElementSize,size_t hint);
Dictionary *(*CreateWithAllocator) (size_t elementsize,size_t hint,
ContainerMemoryManager *allocator);

Description: Creates a new dictionary with the given element size and with a table big
enough to store hint entries. The Create function uses the current memory manager
as the allocator for the new dictionary. CreateWithAllocator uses the given allocator
object.

Errors:

CONTAINER_ERROR.NOMEMORY Not enough memory to complete the operation.
Returns: A pointer to the new dictionary or NULL if there is not enough memory to
create it.

deletelterator

113

4. THE CONTAINERS

int deletelterator(Iterator *it);

Description: Reclaims the memory used by the given iterator object

Returns: Integer smaller than zero with error code or a positive number when the
operation completes.

Errors:

CONTAINER_ERROR_BADARG The iterator pointer is NULL .

Equal
int (*Equal) (Dictionary *d1,Dictionary *d2);

Description: Compares the given dictionaries using their comparison function. If the
dictionaries differ in their size, flags, or hash functions they compare unequal. If any of
their elements differ, they compare unequal. If both d1 and d2 are NULL they compare
equal. If Both d1 and d2 are empty they compare equal.

Errors:

None

Returns: The result is one if the dictionaries are equal, zero otherwise.

Erase
int (*Erase) (Dictionary *Dict,const char xkey);

Description: Removes from the dictionary the element that matches the given key.
Returns: A positive value that indicates that a match was found and the element was
removed. If no element matched the result is CONTAINER_ERROR_NOTFOUND . If an
error occurs, a negative error code is returned.

Errors:

CONTAINER_ERROR_.BADARG One or both arguments are NULL .

Example:

double d = 2.3;

Vector *AL;
int r = iVector.Erase(AL,&d);
if (r > 0)

printf("2.3 erased|n");
else if (r == 0)

printf ("No element with value 2.3 present\n");
else

printf("error code %d\n",r);

Finalize
int (*¥Finalize) (Dictionary *dict);

114

4.6. The dictionary container: iDictionary

Description: Reclaims all memory used by the dictionary, including the array header
object itself.

Errors:

CONTAINER_ERROR_BADARG The given pointer is NULL .
CONTAINER_ERROR_READONLY The dictionary is read-only. No modifications allowed.
Returns: A positive value means the operation completed. A negative error code
indicates failure.

Example:

Dictionary *AL;
int r = iDictionary.Finalize(AL);
if (r < 0) { /* error handling */ }

GetElementSize

size_t (*GetElementSize) (Dictionary *Dict);

Description: Retrieves the size of the elements stored in the given dictionary. Note
that this value can be different than the value given to the creation function because of
alignment requirements.

Errors:

CONTAINER_ERROR_BADARG The given pointer is NULL .

Returns: The element size or zero if an error.

Example:

Dictionary *Dict;
size_t siz = iDictionary.GetElementSize(Dict);

GetElement

void *(*GetElement) (Dictionary *Dict,const unsigned char xkey);

Description:
Returns: aread only pointer to the element at the given index, or NULL if the operation
failed. This function will return NULL if the dictionary is read only.

Use the CopyElement function to get a read/write copy of an element of the dictio-
nary.
Errors:
CONTAINER_ERROR_.BADARG The given array pointer or the key are NULL .
CONTAINER_ERROR_READONLY The array is read only.
Example:

Dictionary *Dict;
double *d = iDictionary.GetElement(Dict,"Index");
if (d == NULL) { /* Error handling */ }

115

4. THE CONTAINERS

Init

Dictionary *(*Init) (Dictionary *Dict,size_t elementsize,size_t hint);

Description: Initializes the indicated storage for use asa dictionary object. This pro-
cedure is completely equivalent to Create with the difference that there is no allocation
done for the dictionary header. Uses the current memory manager for the allocations of
the slot table.

Returns: A pointer to its first argument if successfull or NULL if there is no memory
to complete the operation.

InitWithAllocator

Dictionary *(xInitWithAllocator) (Dictionary *Dict,
size_t elementsize, size_t hint,
ContainerMemoryManager *allocator);

Description: Initializes the indicated storage for use as a dictionary object. This
procedure is completely equivalent to CreateWithAllocator with the difference that
there is no allocation done for the dictionary header. Uses the given memory manager
for the allocations of the slot table.

Returns: A pointer to its first argument if successfull or NULL if there is no memory
to complete the operation.

Insert
int (*Insert)(Dictionary *Dict, const unsigned char *key,void *Data);

Description: Inserts the new key and its corresponding data into the given dictionary.
If the key is already present, nothing is changed. This contrasts with the behavior of
Add that will replace an existing key.

Errors:

CONTAINER_ERROR_BADARG Any of the given pointers is NULL .
CONTAINER_ERROR_READONLY The array is read only.
CONTAINER_ERROR_NOMEMORY Not enough memory to complete the operation.
Returns: A positive value if the key was inserted, zero if the key was already present,
or a negative error code.

Load

Dictionary *(*Load) (FILE *stream,ReadFunction readFn,void *arg);

Description: Reads a dictionary previously saved with the Save function from the
stream pointed to by stream. If readFn is not NULL , it will be used to read each
element. The “arg” argument will be passed to the read function. If the read function
is NULL , this argument is ignored and a default read function is used.

Errors:

116

4.6. The dictionary container: iDictionary

CONTAINER_ERROR_BADARG The given stream pointer is NULL .
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A new dictionary or NULL if the operation could not be completed. Note
that the function pointers in the array are NOT saved, nor any special allocator that
was in the original dictionary. Those values will be the values by default. To rebuild
the original state the user should replace the pointers again in the new array.

newlterator
Iterator *(*newlterator) (Dictionary *Dict);

Description: Allocates and initializes a new iterator object to iterate this dictionary.
The exact sequence is implementation defined but it will be the same for the same
dictionary with the same number of elements.

Errors:

If no more memory is available it returns NULL .

Returns: A pointer to a new iterator or NULL if there is no more memory left.
Example:

Dictionary #*Dict;

Iterator *it = iDictionary.newIterator(Dict);

double *d;

for (d=it->GetFirst(it); d !'= NULL; d = it->GetNext(it)) {
double val = *d;
// Work with the value here

+

iDictionary.deletelterator(it);

SetDestructor
DestructorFunction SetDestructor(Dictionary *d,DestructorFunction fn);

Description: Sets the destructor function to its given argument. If the function argu-
ment is NULL nothing is changed and the call is interpreted as a query since the return
value is the current value of the destructor function. If the dictionary argument is NULL
, the result is NULL .

Returns: The old value of the destructor.

Size
size_t (*Size) (Dictionary *Dict);

Description: Returns the number of elements stored in the dictionary or SIZE_MAX
if the dictionary pointer is NULL .
Errors:

117

4. THE CONTAINERS

CONTAINER_ERROR_BADARG The given array pointer or the key are NULL .
Example:

Dictionary *Dict;
size_t elem = iDictionary.Size(Dict);

Save
int (*Save) (Dictionary *D, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given dictionary are saved into the given stream.
If the save function pointer is not NULL , it will be used to save the contents of each
element and will receive the arg argument passed to Save, together with the output
stream. Otherwise a default save function will be used and arg will be ignored. The
output stream must be opened for writing and must be in binary mode.

Errors:

CONTAINER_ERROR_BADARG The dictionary pointer or the stream pointer are NULL .
EOF A disk input/output error occurred.

Returns: A positive value if the operation completed, a negative value or EOF other-
wise.

Example:

Dictionary *Dict;

FILE *outFile;

if (iDictionary.Save(Dict,outFile,NULL,NULL) < 0) {
/* Handle error here */

}

Sizeof
size_t (*Sizeof) (Dictionary *Dict);

Description: Returns the total size in bytes of the dictionary, including the header,
and all data stored in the dictionary, including the size of the dictionary header. If Dict
is NULL , the result is the size of the Dictionary structure.

Returns: The number of bytes used by the dictionary or the size of the Dictionary
structure if the argument is NULL .

Example:

Dictionary *Dict;
size_t size = iDictionary.Sizeof(Dict);

SetErrorFunction

ErrorFunction (*SetErrorFunction) (Dictionary *dict,ErrorFunction efn);

118

4.6. The dictionary container: iDictionary

Description: Replaces the current error function for the given dictionary with the new
error function if different from NULL .

Errors:

CONTAINER_-ERROR_-BADARG The dictionary pointer is NULL .
CONTAINER_ERROR_READONLY The dictionary is read only and the function argument
is not NULL .

Returns: The old value of the error function or NULL if there is an error.

Size
size_t (*Size) (Dictionary *d);

Description: Returns the number of elements stored in the dictionary. If the argument
is NULL the result is zero.
Example:

Dictionary *d;
size_t elem = iDictionary.Size(d);

119

4.7

4.7.1

4. THE CONTAINERS

The TreeMap interface: iTreeMap

The tree map container uses a tree to associate keys to values. Trees are extremely
efficient data structures that allow access to millions of items with a few comparisons.
Disadvantages include a greater overhead than other containers, and a complex machin-
ery to maintain them.

This associative container is special in that it contains no separate key, the elements
themselves are the key. Obviously they need imperatively a comparison function, and
that comparison function could use some parts of the stored object as a key, but that is
transparent to the interface.

An essential point in this container is the comparison function. Since all insertions
searches and deletions from/to the tree are done using that function, it is essential that
is defined correctly. Like all other comparison functions it can receive an extra argument
that conveys some kind of context to it. This implies that functions like ’Add’ have an
extra argument to be able to pass this context to the comparison function.

The comparison function must be consistent

It is important to stress that for this container it is essential that the comparison
function returns always the same result for two given elements. The context passed
through this auxiliary arguments must not be used to change the result of the element
comparison according to some external factor. Any inconsistency in the comparison
function will destroy completely the whole container and the user will be unable to
retrieve the data stored or (worst) retrieve the wrong data.

The interface

typedef struct tagTreeMapInterface {

int (*Add) (TreeMap *ST, void *Data,void *ExtraArgs);

int (*Apply) (TreeMap *ST,
int (*Applyfn) (const void *data,void *arg),
void *arg);

TreeMap *(*Copy) (TreeMap *src);

TreeMap *(*CreateWithAllocator) (size_t ElementSize,

ContainerMemoryManager *m) ;

TreeMap *(*Create) (size_t ElementSize);

unsigned (*GetFlags) (TreeMap *ST);

int (*Clear) (TreeMap *ST);

int (*Contains) (TreeMap *ST,void *element,void *ExtraArgs);

int (*deletelterator) (Iterator *);

int (*Erase) (TreeMap *tree, void *element,void *ExtraArgs);

int (*Equal) (TreeMap *tl, TreeMap *t2);

int (*Finalize) (TreeMap *ST);

void *(#Find) (TreeMap *tree,void *element,void *ExtralArgs);

120

4.7. The TreeMap interface: iTreeMap

size_t (*GetElementSize) (TreeMap *d);

int (*Insert)(TreeMap *RB, const void *Data, void *ExtralArgs);

Iterator *(*newlterator) (TreeMap *);

TreeMap *(*Load) (FILE *stream, ReadFunction loadFn,void *arg);

int (xSave) (TreeMap *src,FILE *stream,

SaveFunction saveFn,void *arg);
CompareFunction (*SetCompareFunction) (TreeMap *ST,
CompareFunction fn);

DestructorFunction (*SetDestructor)(TreeMap *Tree,
DestructorFunction fn);

ErrorFunction (*SetErrorFunction) (TreeMap *ST, ErrorFunction fn);

unsigned (*SetFlags) (TreeMap *ST, unsigned flags);

size_t (*Sizeof) (TreeMap *ST);

size_t (*Size) (TreeMap *ST);

} TreeMapInterface;

All the above functions were described for the sequential containers and their syntax is
here the same.

121

4. THE CONTAINERS

4.8 Hash Table: iHashTable

Hash table is a similar container as dictionary, but allows for more features at the expense
of a slightly more complicated interface. Keys aren’t restricted to zero terminated strings
but can be any kind of data. The table resizes itself as it grows. Merging two hash tables

4.8.1 The interface

typedef struct {
int (*Add) (HashTable *HT,const void x*key,
size_t keyLength,const void #*Data);
int (*Apply) (HashTable *HT,
int (*ApplyFn) (void *Key,
size_t keyLength,
void *data,
void *ExtraArg),
void *ExtraArg);
int (*Clear) (HashTable *HT);
HashTable *(*Copy) (const HashTable *0rig,Pool *pool);
HashTable *(*Create) (size_t ElementSize);
int (*deletelterator) (Iterator *);
int (*Erase) (HashTable *HT,void *key,size_t klen);
int (*Finalize) (HashTable *HT);
void *(*GetElement) (const HashTable *HT,
const void *Key ,size_t keyLength);
unsigned (*GetFlags) (const HashTable *HT);
HashTable *(*Load) (FILE *stream, ReadFunction readFn, void *arg);
HashTable *(*Merge) (Pool *p,
const HashTable *overlay,
const HashTable *base,
void * (xmerger) (Pool *p,
const void *key,
size_t keyLength,
const void *hl_val,
const void *h2_val,
const void *data),
const void *data);
Iterator *(*newlterator) (HashTable *);
HashTable *(*0verlay) (Pool *p,
const HashTable *overlay,
const HashTable *base);
int (*Resize) (HashTable *HT,size_t newSize);
int (*Replace) (HashTable *HT,
const void x*key,

122

4.8.2

4.8. Hash Table: iHashTable

size_t keyLength,const void *data);
int (*Save) (HashTable *HT,
FILE *stream, SaveFunction saveFn,void *arg);
int (xSearch) (HashTable *ht,
int (*Comparefn) (void *rec,
const void x*key,
size_t keyLength,
const void *value),
void *rec);
ErrorFunction (*SetErrorFunction) (HashTable *HT,ErrorFunction fn);
unsigned (*SetFlags) (HashTable *HT,unsigned flags);
HashFunction (*SetHashFunction) (HashTable *ht, HashFunction hf);
size_t (*Size) (const HashTable *HT);
size_t (*Sizeof) (const HashTable *HT);
} HashTableInterface;
extern HashTableInterface iHashTable;

The API

Add

int (*Add) (HashTable *ht,
void *xkey,
size_t keyLength,
const void *data);

Description: Adds the given element to the container using the given “key” string. It
is assumed that “data” points to a contiguous memory area of at least ht-; ElementSize
bytes. Both the key and the data are copied into the container.

If an element exists with the given key, its contents are replaced with the new data.
Errors:
CONTAINER_ERROR_BADARG The hash table, the key or the data pointers are NULL .
CONTAINER_ERROR_READONLY : The hash table is read-only. No modifications allowed.
CONTAINER_ERROR.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation added a new element, zero if the data was
written into an existing element, or a negative error code if an error occurred.
Example:

HashTable *ht;

double data = 4.5;

int result = iHashTable.Add(ht,"Interest rate",
strlen(\Interest rate"),&data);

if (result < 0) { /* Error handling */ }

123

4. THE CONTAINERS

Apply

int (*Apply) (HashTable *ht,
int (Applyfn) (const unsigned char xkey,
size_t keyLength,
void *data,
void *extraArg),
void *extraArg);

Description: Apply will call the given function for each element of the array. The first
argument of the callback function receives they key ,the second is the length of the key.
The third is a pointer to one element of the table. The fourth argument of the callback
is the “extraArg” argument that the Apply function receives and passes to the callback.
This way some context can be passed to the callback, and from one element to the next.
Note that the result of the callback is not used. This allows all kinds of result types
to be accepted after a suitable function type cast.
If the dictionary is read-only, a copy of the element will be passed to the callback
function.
Errors:
CONTAINER_ERROR_BADARG Either the hash table pointer or Applyfn are NULL .
CONTAINER_ERROR.NOMEMORY The hash table is read-only and there is no more
memory to allocate the buffer to copy each element.
Example:

static int print(const char x*key,
void *pElement,
void *pResult)

{
double *p = pElement;
printf ("%s: %g\n",key,*p);
return 1;

b

int main(void) {
Dictionary *dict = iDictionary.Create(sizeof (double),5);
double d = 2;
iDictionary.Add(dict,"First item",&d);
d = 3;
iDictionary.Add(dict,"Second item",&d);
iDictionary.Apply(dict,print,NULL);
return O;
}
Output should be:
First item: 2
Second item: 3

124

4.8. Hash Table: iHashTable

Clear

int (xClear) (HashTable *ht);

Description: Erases all stored data and releases the memory associated with it. The
hash table header is not destroyed, and its contents will be the same as it was when
initially created. It is an error to use this function when there are still active iterators
for the container.

Returns: The result is greater than zero if successful, or an error code if an error occurs.
Errors:

CONTAINER_ERROR_.BADARG The hash table pointer is NULL .
CONTAINER_ERROR_READONLY The hash table is read only.

Example:

HashTable *ht;
int m = iHashTable.Clear(ht);

Copy
HashTable *(*Copy) (const HashTable *0rig,Pool *pool);

Description: Copies the given hash table using the given pool. If “pool” is NULL ,the
pool of the given hash table will be used.

Errors:

CONTAINER_ERROR_BADARG The hash table pointer is NULL .
CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.

Create
HashTable *(*Create) (size_t ElementSize);

Description: Creates a new hash table and initializes all fields. The table will use the
current memory manager for its pool.

Errors:

CONTAINER_ERROR_-BADARG The parameter is zero or bigger than the maximum size
the implementation supports.

CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.

deletelterator
int (xdeletelterator) (Iterator *);

Description: Releases the memory used by the given iterator.
Errors:

CONTAINER_ERROR_BADARG The parameter is NULL .
Returns: A positive value if successful or a negative error code.

Erase

125

4. THE CONTAINERS

int (*Erase) (HashTable *HT,void *key,size_t keyLength);

Description: Removes from the hash table the element with the given key.

Errors:

CONTAINER_ERROR_.BADARG The hash table parameter or the key pointer are NULL ,

or the keyLength is zero.

Returns: A positive number if the operation completed, a negative error code otherwise.
Finalize Synopsis: int (*Finalize)(HashTable *HT); Description: Releases all memory

used by the hash table and destroys the hash table header itself.

Errors:

CONTAINER_ERROR_BADARG The parameter is NULL .

GetElement
void *(*GetElement) (const HashTable *H,const void *Key,size_t keyLen);

Description: Returns a pointer to the given hash table element.

Errors:

CONTAINER_ERROR_BADARG The hash table parameter or the key pointer are NULL ,
or the keyLen parameter is zero.

Returns: A pointer to the element or NULL if no element with the specified key exists.

GetFlags

unsigned (*GetFlags) (const HashTable *HT);

Description: Returns an unsigned integer with the state of the table.

Load

HashTable *(*Load) (FILE *stream,ReadFunction readFn,void *arg);

Description: Reads a table previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
“arg” argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.

Errors:

CONTAINER_ERROR_BADARG The given stream pointer is NULL .
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A new table or NULL if the operation could not be completed. Note that the
function pointers in the array are NOT saved in most implementations, nor any special
allocator that was in the original table. In most implementations those values will be
the values by default. To rebuild the original state the user should replace the pointers
again in the new table.

Merge

126

4.8. Hash Table: iHashTable

HashTable *(*Merge) (Pool *p,

const HashTable *overlay,

const HashTable *base,

void * (xmerger) (Pool *p,
const void *key,
size_t keyLength,
const void *hl_val,
const void *h2_val,
const void *data),

const void *data);

Description: Merge two hash tables into one new hash table. If the same key is present
in both tables, call the supplied merge function to produce a merged value for the key
in the new table. Both hash tables must use the same hash function. The arguments
should be:

1. The pool to use when allocating memory. If NULL , the pool of the “base” hash
table will be used.

2. The first table to be used in the merge.
3. The second table

4. An argument to pass to the merger function.

newlterator
Iterator *(*newlIterator) (HashTable *HT);

Description: Allocates and initializes a new iterator object to iterate this table. The
exact sequence of each object returned is implementation defined but it will be the same
for the same dictionary with the same number of elements.

Errors:

CONTAINER_ERROR_BADARG The parameter is NULL .
CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.
Returns: A pointer to a new iterator or NULL if the operation couldn’t be completed.
Example:

HashTable *HT;

Iterator *it = iHashTable.newlIterator (HT);

double *d;

for (d=it->GetFirst(it); d !'= NULL; d = it->GetNext(it)) {
double val = *d;
// Work with the value here

+

iHashTable.deletelterator(it);

127

4. THE CONTAINERS

Overlay

HashTable *(*0verlay) (Pool *p,
const HashTable *overlay,
const HashTable *base);

Description: Copies overlay into base. If conflicts arise, the data in base will be copied
in the result.

Errors:

CONTAINER_ERROR_BADARG One of the arguments is NULL .
CONTAINER_ERROR.NOMEMORY Not enough memory to complete the operation.

Resize
int (*Resize) (HashTable *HT,size_t newSize);

Description: Will resize the given hash table to a new size. If the given new size is
zero, the new size is implementation defined, and equal to the amount when automatic
resizing occurs.

Errors:

CONTAINER_ERROR_BADARG The parameter is NULL .
CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.
Returns: A positive value if the operation completed, a negative error code otherwise.

Replace

int (*Replace) (HashTable *HT, const void xkey,
size_t keyLength,const void *data);

Description: Will replace the contents of the given element if found.

Errors:

CONTAINER_ERROR_BADARG The hash table pointer, the key or the replacement data
are NULL , or the keyLength is zero.

Returns: A positive number if the element was replaced or zero if the element wasn’t
found. If the operation didn’t complete a negative error code is returned.

Save
int (*Save) (HashTable *HT, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given table are saved into the given stream. If the
save function pointer is not NULL , it will be used to save the contents of each element
and will receive the arg argument passed to Save, together with the output stream.
Otherwise a default save function will be used and arg will be ignored. The output
stream must be opened for writing and must be in binary mode.

Errors:

CONTAINER_ERROR_BADARG The array pointer or the stream pointer are NULL .

128

4.8. Hash Table: iHashTable

EOF A disk input/output error occurred.

Returns: A positive value if the operation completed, a negative value or EOF other-
wise.

Example:

HashTable *HT;

FILE *outFile;

if (iHashTable.Save (HT,outFile,NULL,NULL) < 0) {
/* Handle error here */

¥

SetErrorFunction

ErrorFunction (*SetErrorFunction) (HashTable *HT,ErrorFunction fn);

Description: Replaces the current error function for the given table with the new error
function if the parameter is different from NULL . Otherwise no replacement is done.
Errors:

CONTAINER_ERROR_BADARG The table pointer is NULL .
CONTAINER_ERROR_READONLY The table is read only and the function argument is
not NULL .

Returns: The old value of the error function or NULL if there is an error.

Size
size_t (*Size) (const HashTable *HT);

Description: Returns the number of elements stored in the given table.

Errors:

CONTAINER_ERROR_BADARG The table pointer 1s NULL .
Returns: The number of elements stored in the table

Sizeof
size_t (*Sizeof) (const HashTable *HT);

Description: Returns the number of bytes of storage used in the given table including
the size of the elements stored in it. If HT is NULL the result is the size of the HashTable
header.

Returns: The number of elements stored in the table or the size of the HashTable
header if the HT pointer is NULL .

129

4.9

4.9.1

4.9.2

4. THE CONTAINERS

Queues: iQueue

Queues are a type of container adaptors, specifically designed to operate in a FIFO
context (first-in first-out), where elements are inserted into one end of the container and
extracted from the other.

The sample implementation shows how to implement this container as an “adaptor”
container, i.e. based on another container. The implementation uses a linked list to
implement a queue 2.

Interface

typedef struct _Queue (Queue;

typedef struct _Queuelnterface {
Queue *(*Create) (size_t elementSize);
Queue *(*CreateWithAllocator) (size_t elementSize,
ContainerMemoryManager *allocator);

int (*Size) (Queue *Q);

size_t (¥Sizeof) (Queue *q);

int (¥*Enqueue) (Queue *Q, void *Element);
void * (xDequeue) (Queue *Q);

int (¥Clear) (Queue *Q);

int (¥*Finalize) (Queue *Q);

void * (xFront) (Queue *Q);
void * (*Back) (Queue *Q);
List * (xGetList) (Queue *q);

} Queuelnterface;
extern Queuelnterface iQueue;

The API

All methods are exactly like the ones in other containers except for Enqueue, that is
equivalent to “Add” since adds one element at the end of the container, and Dequeue,
that is the same as PopFront, i.e. pops the first element of the container.

The Java language provides an interface in java.util. C# offers a Queue class in
System.Collections, implemented as a circular array that is icreased automatically if needed. There
is also a generic Queue class.

In C++ the definition is: template < class T, class Container = deque<T> > class queue;
Where

e T: Type of the elements.

e Container: Type of the underlying container object used to store and access the elements.

130

4.10

4.10. Deque: iDeque

Front

int (#Front) (Queue *Q,void *result);

Description: Returns the contents of the first element in the given memory area that
should be at least the size of the element size of the queue. Note that nothing is changed,
and the first element is not erased from the container.

Returns: A positive number for success, zero if the queue is empty or a negative error
code.

Errors:

CONTAINER_ERROR_BADARG The Queue pointer is NULL .

Back

int (*Back) (Queue *Q,void *result);

Description: Returns the contents of the last element in the given memory area that
should be at least the size of the element size of the queue. Note that nothing is changed,
and the last element is not erased from the container.

Returns: A positive number for success, zero if the queue is empty or a negative error
code.

Errors:

CONTAINER_ERROR_BADARG The Queue pointer is NULL .

GetList

List *(*GetList) (Queue *q);

Description: Queues are based on the list container. It is not necessary to duplicate all
the list functions in the queue interface: this function allows you to access the underlying
list and use all the list specific APIs with it.

Returns: A pointer to the list container or NULL if the queue pointer passed is NULL .

Deque: iDeque

Deque (usually pronounced like ”deck”) is an irregular acronym of double-ended queue.
Double-ended queues are a kind of sequence containers. As such, their elements are
ordered following a strict linear sequence. Deques may be implemented by specific
libraries in different ways, but in all cases they allow for adding and retrieving elements
at both ends, with storage always handled automatically (expanding and contracting as
needed).

Operations to insert and retrieve elements in the middle are not provided because
if users need a plain sequential container they can use one. Individual implementation
can offer those if they think it is useful. This differs from the C++ implementation.

Here is a little table with a Rosetta stone for deque:

131

4.10.1

4.

THE CONTAINERS

C Ada C++ Java Perl PHP Python
PushBack Append push_back offerLast push array_push append
PushFront Prepend push_front offerFirst unshift array_unshift appendleft
PopBack Delete_Last pop_back pollLast pop array_pop pop
PopFront Delete_First pop_front pollFirst shift array _shift popleft
Back Last_Element back peekLast $array[-1] end <obj>[-1]

Some functions that the C++ interface provides like is_.empty() can be obtained in

this implementation simply by invoking:

iDeque.Size(deque) ==

Interface

The interface iDeque is as follows:

typedef struct deque_t Deque;
typedef struct _DeQueuelnterface {

void (*Apply) (Deque *d,int (*fn)(void *e,void * arg),void *arg);
int (*Back) (Deque *d,void *outbuf);

int (*Clear) (Deque *Q);

size_t (*Contains) (Deque * d, void* item);

Deque *(*Copy) (Deque *d) ;

Deque *(xCreate) (size_t elementSize);

int (*deletelterator) (Iterator *);

int (*Equal) (Deque *d1,Deque *d2);

int (*Erase) (Deque * d, void* item);

int (*Finalize) (Deque *Q);

unsigned (*GetFlags) (Deque *Q);

Deque *(xLoad) (FILE *stream, ReadFunction readFn,void *arg);
Iterator *(*newlterator) (Deque *Deq) ;

int (*Save) (Deque *d,FILE *stream, SaveFunction saveFn,void *arg);
unsigned (*SetFlags) (Deque *Q,unsigned newFlags);

size_t (*Size) (Deque *Q);

ErrorFunction (*SetErrorFunction) (Deque *d,ErrorFunction);
size_t (*Sizeof) (Deque *d);

int (*PushBack) (Deque *Q, void *Element);

int (*PushFront) (Deque *Q, void *Element);

int (*PopBack) (Deque *d,void *outbuf);

int (*Front) (Deque *d,void *outbuf) ;

int (*PopFront) (Deque *d,void *outbuf);

} Dequelnterface;

extern Dequelnterface iDeque;

132

4.10. Deque: iDeque

The deque container can be implemented as an adaptor container, for instance based
on a double linked list or in an vector. In any case the underlying container interface is
not visible.

Apply
void (*Apply) (Deque *d,int (Applyfn) (void *,void *),void *arg);

Description: Will call the given function for each element. The first argument of the
callback function receives an element of the array. The second argument of the callback
is the arg argument that the Apply function receives and passes to the callback. This
way some context can be passed to the callback, and from one element to the next. Note
that the result of the callback is not used. This allows all kinds of result types to be
accepted after a suitable cast. If the array is read-only, a copy of the element will be
passed to the callback function.

Errors:

CONTAINER_ERROR_BADARG Either the deque or Applyfn are NULL .
CONTAINER_ERROR.NOMEMORY The list is read-only and there is no more memory to
allocate the buffer to copy each element.

Back

int (*Back) (Deque *d,void *outbuf);

Description: Copies into the given buffer the last element stored in the Deque d.
Errors:

CONTAINER_ERROR_BADARG Either d or outbuf are NULL .

Returns: A positive value of the operation completed, zero if the container is empty,
or a negative error code otherwise.

Clear
int (xClear) (Deque *Q) ;

Description: Erases all elements stored in the queue and reclaims the memory used.
The Deque object itself is not destroyed. Errors

CONTAINER_ERROR_BADARG The deque pointer is NULL .
CONTAINER_ERROR_READONLY The deque is read-only. No modifications allowed.

Contains
size_t (*Contains) (Deque * d, void* item);

Description: Searches the deque for the given data, returning its (index one based)
position or zero if not found. Errors

CONTAINER_ERROR_BADARG The deque pointer is NULL .

Returns: The index of element or zero if not found.

Copy

133

4. THE CONTAINERS

Deque *(*Copy) (Deque *d);

Description: Makes a copy of the given deque.

Errors:

CONTAINER_ERROR_BADARG The deque pointer is NULL .
CONTAINER_ERROR.NOMEMORY Not enough memory to complete the operation.
Returns: A pointer to the new container or NULL if the operation did not complete.

Create
Deque *(*Create) (size_t elementSize);

Description: Creates a new Deque container using “elementSize” as the size that each
element will have.

Errors:

CONTAINER_ERROR_BADARG The elementSize parameter is zero or bigger than what
the implementation supports.

CONTAINER_ERROR_NOMEMORY Not enough memory to complete the operation.
Returns: A pointer to the new container or NULL if the operation did not complete.
Example:

Deque *d = iDeque.Create(sizeof (myType));
if (d == NULL) { /* Error handling */ }

Equal
int (*Equal) (Deque *d1,Deque *d2);

Description: Compares the given deques using their comparison function. If they differ
in their size, flags, or compare functions they compare unequal. If any of their elements
differ, they compare unequal. If both d1 and d2 are NULL they compare equal. If both
are empty, they compare equal.

Errors:

None

Returns: The result is one if the deques are equal, zero otherwise.

Front

int (*PeekFront) (Deque *d,void *outbuf);

Description: Copies into the given buffer the first element stored in the Deque d.
Errors:

CONTAINER_ERROR_BADARG Either d or outbuf are NULL .

Returns: A positive value of the operation completed, zero if the container is empty,
or a negative error code otherwise.

Erase

134

4.10. Deque: iDeque

int (*Erase) (Deque * d, voidx* item);

Description: Erases the first occurrence of the given element from the container if
found, starting from the front.

Errors:

CONTAINER_ERROR_BADARG The deque pointer or the item pointer are NULL .
CONTAINER_ERROR_READONLY The deque is read-only. No modifications allowed.
Returns: A positive number if the item was found and erased, zero if the item wasn’t
found, or a negative error code if the operation did not complete.

Finalize
int (*Finalize) (Deque *d);

Description: Reclaims all memory used by the container erasing all elements, if any.
Then it destroys the container object itself.

Errors:

CONTAINER_ERROR_BADARG The deque or the element pointers are NULL .
CONTAINER_ERROR_READONLY The deque is read-only. No modifications allowed.
Returns: A positive number if the operation completed, a negative error code otherwise.

GetFlags

unsigned (*GetFlags) (Deque *d);

Description: Retrieves the state of the flags. If the implementation doesn’t support
this field this function always returns zero.

Errors:

CONTAINER_ERROR_BADARG The deque pointer is NULL .

Returns: The state of the flags field.

Load

Deque *(*Load) (FILE *stream,ReadFunction readFn,void *arg);

Description: Reads a deque previously saved with the Save function from the stream
pointed to by stream. If readFn is not NULL , it will be used to read each element. The
“arg” argument will be passed to the read function. If the read function is NULL , this
argument is ignored and a default read function is used.

Errors:

CONTAINER_ERROR_-BADARG The given stream pointer is NULL .
CONTAINER_ERROR.NOMEMORY There is not enough memory to complete the opera-
tion.

Returns: A new deque or NULL if the operation could not be completed. Note that the
function pointers in the deque are NOT saved in most implementations, nor any special
allocator that was in the original table. In most implementations those values will be

135

4. THE CONTAINERS

the values by default. To rebuild the original state the user should replace the pointers
again in the new table.

PopBack

int (*PopBack) (Deque *d,void *outbuf);

Description: Copies into the given buffer the last element stored in the Deque d, then
erases the element from the deque.

Errors:

CONTAINER_ERROR_BADARG Either d or outbuf are NULL .

Returns: A positive value of the operation completed, zero if the container is empty,
or a negative error code otherwise.

PopFront

int (*PopFront) (Deque *d,void *outbuf);

Description: Copies into the given buffer the first element stored in the Deque d, thnen
erases the element from the deque.

Errors:

CONTAINER_ERROR_BADARG Either d or outbuf are NULL .

Returns: A positive value of the operation completed, zero if the container is empty,
or a negative error code otherwise.

PushBack

int (*PushBack) (Deque *d,void *element);

Description: Adds the given element to the end of the deque. It is assumed that
“element” points to a contiguous memory area of at least ElementSize bytes.

Errors:

CONTAINER_ERROR_BADARG The deque or the element pointers are NULL .
CONTAINER_ERROR_READONLY The deque is read-only. No modifications allowed.
CONTAINER_ERROR_NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation added a new element, or a negative error
code if an error occurred.

Example:

Deque *d;

double data = 4.5;

int result = iDeque.PushBack(d,&data);
if (result < 0) { /* Error handling */ }

PushFront

int (*PushFront) (Deque *d,void *element);

136

4.10. Deque: iDeque

Description: Adds the given element to the start of the deque. It is assumed that
“element” points to a contiguous memory area of at least ElementSize bytes.

Errors:

CONTAINER_ERROR_-BADARG The deque or the element pointers are NULL .
CONTAINER_ERROR_READONLY The deque is read-only. No modifications allowed.
CONTAINER_ERROR_.NOMEMORY Not enough memory to complete the operation.
Returns: A positive number if the operation added a new element, or a negative error
code if an error occurred.

Example:

Deque *d;

double data = 4.5;

int result = iDeque.PushFront(d,&data) ;
if (result < 0) { /* Error handling */ }

Save
int (*Save) (Deque *d, FILE *out, SaveFunction Fn, void *arg);

Description: The contents of the given deque are saved into the given stream. If the
save function pointer is not NULL , it will be used to save the contents of each element
and will receive the arg argument passed to Save, together with the output stream.
Otherwise a default save function will be used and arg will be ignored. The output
stream must be opened for writing and must be in binary mode.

Errors:

CONTAINER_ERROR_BADARG The deque pointer or the stream pointer are NULL . EOF
A disk input/output error occurred.

Returns: A positive value if the operation completed, a negative value or EOF other-
wise.

Example:

Deque *d;

FILE *outFile;

if (iDeque.Save(d,outFile,NULL,NULL) < 0) {
/* Handle error here */

3

137

4.11

4.11.1

4. THE CONTAINERS

Bloom filters

Bloom filters allow you to determine cheaply and quickly if an element is member of a
set without actually looking into the large set. This container doesn’t store any data,
just a series of bits indicating whether the element is there. It can return false an-
swers, specifically a false positive meaning it can answer "yes, the element is there”
when in fact it is not. When it tells you however that the element is not there
you can be sure it is not in the set. The probability that a false answer occurs can
be calculated in function of the size reserved for the bit table: the bigger the ta-
ble, the smaller the probability of a false answer for a fixed number of elements. 32

Create
Bloom Filter Add
Destruction Clear

Finalize

The interface: iBloomFilter

typedef struct tagBloomFilterInterface {
size_t (*CalculateSpace) (size_t maxfElements,double probability);
BloomFilter *(xCreate) (size_t maxElements,double probability);
size_t (*Add) (BloomFilter *b,const void *key,size_t keylen);
int (*#Find) (BloomFilter *b,const void *key,size_t keylen);
int (*Clear) (BloomFilter *b);
int (*Finalize) (BloomFilter *Db);

3More about bloom filters in: http://pages.cs.wisc.edu/ cao/papers/summary-cache/node8.html,
and at the NIST: http://xw2k.nist.gov/dads/html/bloomFilter.html

The original paper about them was published by Burton Bloom: Space/time trade-offs in hash
coding with allowable errors. Communications of ACM, pages 13(7):422-426, July 1970.

The idea behind this data structure is to allocate a vector of m bits, initially all set to 0, and then
choose k independent hash functions, hy, ho, ..., hi,each with range {1,...,m}. For each element a € A,
the whole set, the bits at positions hl(a), h2(a), ..., hk(a) in v are set to 1. (A particular bit might be
set to 1 multiple times).

Given a query for some key b we check the bits at positions h1(b), h2(b), ..., hk(b). If any of them
is 0, then certainly b is not in the set A. Otherwise we conjecture that b is in the set although there
is a certain probability that we are wrong. This is called a “false positive”. The parameters k (the
maximum number of elements) and m (the probability) should be chosen such that the probability m
of a false positive (and hence a false hit) is acceptable.

138

4.11.2

4.11. Bloom filters

} BloomFilterInterface;

The API

CalculateSpace
size_t (*CalculateSpace) (size_t maxElements,double probability);

Description: Returns the space in bytes that would occupy a bloom filter to hold the
given number of elements with the given probability. The probability parameter should
be greater than zero and smaller than 1.0. For values very close to the values zero and
one, a huge number of bits can be necessary and the filter creation function will return
NULL because of lack memory problems.

Errors:

CONTAINER_ERROR_-BADARG The probability is smaller or equal than zero, or bigger
or equal than one.

Returns: The number of bytes needed or zero in case of error.

Create
BloomFilter *(*Create) (size_t maxElements,double probability);

Description: Creates and initializes a filter with space enough to hold MaxFElements
with the given probability for a false answer. The probability parameter should be
greater than zero and smaller than 1.0. For values very close to the values zero and
one, a huge number of bits can be necessary and the filter creation function will return
NULL because of lack memory problems.

Errors:

CONTAINER_ERROR_-BADARG The probability is smaller or equal than zero, or bigger
or equal than one.

CONTAINER_.ERROR.NOMEM There is no memory for the allocation of the necessary
data structures.

Returns: A pointer to a newly allocated bloom filter or NULL in case of error.

Add

size_t (*Add) (BloomFilter *b,const void *key,size_t keylen);

Description: Adds the given key to the filter. The keylen argument should be the
length of the key, that should never be zero.

Errors:

CONTAINER_.ERROR_BADARG The filter pointer or the key pointer are NULL , or the
keylen is zero.

CONTAINER_ERROR_CONTAINER FULL . The maximum number of elements has been
reached.

139

4. THE CONTAINERS

Returns: The number of elements in the filter or zero if there is an error.

Find

int (*Find) (BloomFilter *b,const void *key,size_t keylen);

Description: Searches the given key in the filter.

Errors:

CONTAINER_ERROR_.BADARG The filter pointer or the key pointer are NULL , or the
keylen is zero.

Returns: One if the element is found, zero if it is not, or a negative error code if an
error OCCurs.

Clear

int (*Clear) (BloomFilter *b);

Description: Removes all elements from the filter. No memory is released.
Errors:

CONTAINER_ERROR_.BADARG The given pointer is NULL .

Returns: One if all elements were cleared, a negative error code otherwise.

Finalize
int (*Finalize) (BloomFilter *b);

Description: Releases all memory held by the filter.

Errors:

CONTAINER_ERROR_BADARG The given pointer is NULL .

Returns: One if all elements were cleared, a negative error code otherwise.

140

4.12. Buffers

4.12 Buffers

The buffers interface is greatly simplified compared to the interface of a general container.
The usage of a buffer as an intermediate storage means there is no sense in including all
the functionality of a container. The library provides two types:

1. Stream buffers provide linear storage
2. Circular buffers store the last n items of a stream

Other languages provide similar features®.

4.12.1 Stream buffers

Creation Create

/ \ CreateWithAllocator

StreamBuffer SetPosition

\ Read
Input/Output /

\ Write

Queries GetPosition
GetData
Size
Destruction Clear
Finalize

4 The Java language provides a typed buffer functionality. This buffers are not resizable, have a
cursor and other more sophisticated operations than the buffers proposed here like slicing and compact-
ing.Their place in the Java class hierarchy is: Object — Native I/O — ByteBuffer. There are methods
for viewing the buffer as float, doubles, etc.

The C# language provides also a typed buffer class of the primitive types (char, float, int, etc). It
is called System.Buffer and provides a few methods for determining its length and read/write a single
byte. The language itself doesn’t provide any circular buffers class but several implementations are
available in the net. The same situation applies for Java.

The design objective in this library is to keep buffers small and, while providing functionality, reduce
the interface to a minimum. Compacting is not feasible in C due to the wide use of pointers. If there
is a pointer to the data in the buffer, moving it would invalidate the pointer making for hard to debug
crashes.

141

4. THE CONTAINERS

This objects are designed to store sequentially arbitrary data, resizing themselves as
necessary. There is a cursor, a pointer that indicates where the next data item will be
written. You can move the cursor, overwriting old data, or leaving holes in the buffer
structure.

The interface

typedef struct tagStreamBufferInterface {
StreamBuffer *(*Create) (size_t startsize);
StreamBuffer *(*CreateWithAllocator) (size_t startsize,
ContainerMemoryManager *allocator);
size_t (*Read) (StreamBuffer *b, void *data, size_t siz);
size_t (*Write) (StreamBuffer *b,void *data, size_t siz);
int (*SetPosition) (StreamBuffer *b,size_t pos);
size_t (*GetPosition) (StreamBuffer *b);
char *(*GetData) (StreamBuffer *b);
size_t (*Size) (StreamBuffer *b);
int (*Clear) (StreamBuffer *Db);
int (*¥Finalize) (StreamBuffer *b);
} StreamBufferInterface;

The API

Clear
int (*#Clear) (StreamBuffer *b);

Description: Sets the cursor at position zero and zeroes the whole buffer.
Errors:

CONTAINER_ERROR_-BADARG The given buffer pointer is NULL

Returns: A positive value if successful, a negative error code otherwise.

Create
StreamBuffer *(*Create) (size_t startsize);

Description: Creates a new buffer with the given start size. If the size is zero it will
use a default start value. The allocator used is the current memory manager.

Errors:

CONTAINER_ERROR_NOMEMORY . There is no more memory to create the buffer.
Returns: A pointer to a newly created buffer or NULL if there is no more memory left.

CreateWithAllocator

StreamBuffer *(*CreateWithAllocator) (size_t startsize,
ContainerMemoryManager *allocator);

142

4.12. Buffers

Description: Creates a new buffer using the given allocator and start size. If the start
size is zero a default value is used.

Errors:

CONTAINER_ERROR_NOMEMORY There is no more memory to complete the operation.
Returns: A pointer to the new buffer or NULL if there is no memory left.

Finalize
int (*Finalize) (StreamBuffer *b);

Description: Releases all memory used by the buffer.

Errors:

CONTAINER_ERROR_BADARG The given buffer pointer is NULL .
Returns: A positive value if successful or anegative error code.

GetData

char *(*GetData) (StreamBuffer *b);

Description: Returns a pointer to the data stored in the buffer.
Errors:

CONTAINER_ERROR_BADARG The given buffer pointer is NULL
Returns: A pointer to the buffer’s data or NULL, if an error occurs.

GetPosition

size_t (*GetPosition) (StreamBuffer *b);

Description: Returns the current cursor position.

Errors:

CONTAINER_ERROR_BADARG The stream buffer pointer is NULL

Returns: The cursor position or zero if there is an error. Note that zero is also a valid
cursor position.®

Read

size_t (*Read) (StreamBuffer *b, void *data, size_t siz);

Description: Reads siz bytes from the given buffer, starting from the position of the
cursor. If the buffer finishes before siz characters are read, reading stops, and less
characters than requested are returned. It is assumed that the data buffer contains at
least siz characters.

Errors:

CONTAINER_ERROR_BADARG Either the stream buffer, the data buffer are NULL .

5Here, as in other APIs from the buffer interface it was preferred to have a friendly interface than
to cater for errors. In case of a zero return, you should test for a NULL pointer, but it is even better
to test for it before calling this function.

143

4. THE CONTAINERS

Returns: The number of characters copied or zero if there is an error. Note that if the
number of requested characters is zero, this function will also return zero.

SetPosition

int (*SetPosition) (StreamBuffer *b, size_t pos);

Description: Sets the cursor at the given position. If the position is bigger than the
size of the buffer the cursor is moved to the end of the buffer.

Errors:

CONTAINER_ERROR_-BADARG The given buffer pointer is NULL

Returns: A positive value if successful, a negative error code otherwise.

Size
size_t (*Size) (StreamBuffer *b);

Description: Returns the allocated size of the buffer. If the buffer pointer is NULL
returns the size of the buffer header.

Errors:

None
Returns: The size of the buffer.

Write

size_t (*¥Write) (StreamBuffer *b,void *data, size_t siz);

Description: Writes into the buffer siz characters from the passed pointer data. The
characters are written starting at the cursor position. If the buffer is too small to hold
the data, it will be enlarged using its allocator.

Errors:

CONTAINER_ERROR_NOMEMORY . There is no more memory to enlarge the buffer.
CONTAINER_ERROR_BADARG The stream buffer pointer or the data pointer is NULL .
Returns: The number of characters written.

Example:

#include <containers.h>
int main(void)
{
StreamBuffer *sb = iStreamBuffer.Create(10);
int i;
char buf [20],*p;
for (i=0; i<10; i++) {

sprintf (buf,"item %d",i+1);
iStreamBuffer.Write(sb,buf,1+strlen(buf));

144

4.12. Buffers

b

buf [0]=0;
iStreamBuffer.Write(sb,&buf,1);
printf ("Buffer size is: %d, position is %d\n",
(int)iStreamBuffer.Size(sb),
(int) iStreamBuffer.GetPosition(sb));
iStreamBuffer.SetPosition(sb,0);
p = iStreamBuffer.GetData(sb);
while (*p) {
printf ("%s\n",p);
p += 1 + strlen(p);
+
iStreamBuffer.Finalize(sb);
return 1;

OUTPUT:
Buffer size is: 82, position is 72

item
item
item
item
item
item
item
item
item
item

1

© 00 N O O W N

[
o

This example does the following:

Creates a stream buffer. It assumes success and does not test the return value
of the creation function. The buffer is dimensioned too small for the data it will
contain so it has to resize several times.

Prepares a string buffer with sprintf and writes the resulting string including its
terminating zero in the stream buffer. Note that zeroes have no special significance
in buffers. It loops ten times doing this operation.

It ends the buffer with a terminating double zero.

It prints the buffer size and the number of characters it has written. Note that
they are not the same. The buffer has been resized several times, and at each time
the new capacity is determined by an internal algorithm. Since we did not move
the cursor the position of the cursor give us the number of characters written.

It obtains a pointer to the data in the buffer

145

4. THE CONTAINERS

e [t prints all the strings in the buffer to standard output. Each character string
from 1 to 9 is 7 bytes long, including its terminating zero. The tenth string is 9
bytes, also including the terminating zero. We have then: (7*9)4+9 = 72.

e [t destroys the buffer.

4.12.2 Circular buffers

Add

-~ CreateWithAllocator

Circular ™ (Create
Buffer

inalize

u
. PoeFront

PeekFront

SetDestructor

Size

This objects are designed to store the last n items of a stream. When they are full,
the new items are stored in the same place as the oldest item.

The interface: iCircularBuffer

typedef struct tagCircularBufferInterface {
int (*¥Add) (CircularBuffer * b, void *data_element);
int (*Clear) (CircularBuffer *cb);
CircularBuffer *(*CreateWithAllocator) (size_t sizElement,
size_t sizeBuffer,
ContainerMemoryManager *allocator);
CircularBuffer *(*Create) (size_t sizElement,size_t sizeBuffer);
int (*Finalize) (CircularBuffer *cb);
int (*¥PopFront) (CircularBuffer *b,void *result);
int (*PeekFront) (CircularBuffer *b,void *result);
size_t (*Size) (CircularBuffer *cb);
DestructorFunction SetDestructor(CircularBuffer *cb,
DestructorFunction NewFn);
} CircularBufferInterface;

The API

Add

146

4.12. Buffers

int (*Add) (CircularBuffer * b, void *data_element);

Description: Adds the given data element to the circular buffer. If the buffer is full, the
oldest element’s place will be overwritten with the new data and the container remains
full with the same number of elements.

Errors:

CONTAINER_ERROR_BADARG One or both arguments are NULL .

Returns: A negative error code if an error occurs. If the container is full zero is
returned. If a new element was added a positive number is returned.

Clear

int (*Clear) (CircularBuffer *cb);

Description: Resets the number of elements inside the container to empty without
freeeing the memory used by the buffer.

Errors:

CONTAINER_ERROR_BADARG The buffer pointer b is NULL .

Returns: A negative error code if an error occurs, or a positive number when the
container is reset.

CreateWithAllocator

CircularBuffer *(*CreateWithAllocator) (size_t ElementSize,
size_t sizeBuffer, ContainerMemoryManager *allocator);

Description: Creates an empty circular buffer that can hold at most sizeBuf fer
elements, each element being of size ElementSize. Uses the given allocator to allocate
memory.

Errors:

CONTAINER_.ERROR_BADARG One or both sizes are zero, or the allocator pointer is
NULL .

CONTAINER_ERROR_.NOMEM There is no memory left.

Returns: A pointer to a new circular buffer or NULL if an error occurs.

Create
CircularBuffer *(*Create)(size_t ElementSize, size_t sizeBuffer);

Description: Creates an empty circular buffer that can hold at most sizeBuf fer
elements, each element being of size ElementSize. Uses the CurrentMemoryManager
to allocate memory.

Errors:

CONTAINER_ERROR_BADARG One or both arguments are zero.
CONTAINER_ERROR_NOMEM There is no memory left.

Returns: A pointer to a new circular buffer or NULL if an error occurs.

Finalize

147

4. THE CONTAINERS

int (*Finalize) (CircularBuffer *cb);

Description: Reclaims all memory used by the given buffer.

Errors:

CONTAINER_ERROR_BADARG The buffer pointer is NULL .

Returns: A positive value if the container is destroyed, a negative error code otherwise.

PeekFront

int (*PeekFront) (CircularBuffer *b,void *result);

Description: Copies one item from the front of the circular buffer into the given buffer
without removing the item from the container.

Errors:

CONTAINER_ERROR_BADARG The buffer pointer or the result buffer are NULL .
Returns: A negative error code if an error occurs, zero if the buffer was empty, or a
positive number if an item was copied.

PopFront

int (*PopFront) (CircularBuffer *b,void *result);

Description: Copies one item from the front of the circular buffer into the given buffer
and removes the item from the container. If the result pointer is NULL the item is
removed but nothing is copied.

Errors:

CONTAINER_ERROR_BADARG The buffer pointer is NULL .

Returns: A negative error code if an error occurs, zero if the buffer was empty, or a
positive number if an item was removed.

Example:

#include <containers.h>

int main(void)

{
CircularBuffer *cb = iCircularBuffer.Create(sizeof (int),10);
int i,integer;

for (i=0; i<20;i++) {
iCircularBuffer.Add(cb,&i);

}

printf ("There are ’%d elements\n",iCircularBuffer.Size(cb));

printf ("The container uses %d bytes\n",iCircularBuffer.Sizeof(cb));

printf ("The size of the header is %d\n",
iCircularBuffer.Sizeof (NULL)) ;

/* Print all elements */

while (iCircularBuffer.PopFront(cb,&integer) > 0) {

148

4.12. Buffers

printf("%d ",integer);

}

return O;
}
OUTPUT :

There are 10 elements

The container uses 88 bytes
The size of the header is 48
10 11 12 13 14 15 16 17 18 19

Size
size_t (*Size) (CircularBuffer *cb);

Description: Computes the number of items in the given circular buffer.
Errors:

CONTAINER_ERROR_BADARG The buffer pointer is NULL .
Returns: The number of items in the buffer.

Sizeof

size_t (*Sizeof) (CircularBuffer *cb);

Description: Computes the number of bytes used by given circular buffer.

pointer is NULL returns the size of the circular buffer header structure.
Returns: The number of bytes used by the buffer.

If the

149

4.13

4.13.1

4. THE CONTAINERS

The generic interfaces

This interface allows the user to use containers in a generic way, ignoring its specific
type. Note that there is no ”GenericContainer” object; you can’t create any generic
container. Once a specific container is created, it can be used as a generic container
at any time since all containers comply with the generic interface. This interface just
dispatches internally to the actual container and therefore incurs in a slight performance
cost. ©

Conceptually, the generic interfaces represent a base class (GenericContainer) and
two derived classes: Sequential and Associative containers. It would be possible to derive
more classes, for instance a numeric container class that could be implemented in the
future, This is left open for future releases of this specification. 7

Generic containers

The general generic interface that encloses associative and sequential containers is as
follows:

typedef struct GenericContainer GenericContainer;
typedef struct tagGenericContainerInterface {
size_t (*Size) (GenericContainer *Gen);
unsigned (*GetFlags) (GenericContainer *Gen);
unsigned (*SetFlags) (GenericContainer *Gen,unsigned flags);
int (*Clear) (GenericContainer *Gen);
int (*Contains) (GenericContainer *Gen,void *Value) ;
int (*Erase) (GenericContainer *Gen,void *objectToDelete) ;
int (*¥Finalize) (GenericContainer *Gen);
void (*Apply) (GenericContainer *Gen,
int (*Applyfn) (void *,void * arg),
void *arg);
int (*Equal) (GenericContainer *Genl,GenericContainer *Gen2);
GenericContainer *(*Copy) (GenericContainer *Gen);
ErrorFunction (*SetErrorFunction) (GenericContainer *Gen,
ErrorFunction fn);
size_t (*Sizeof) (GenericContainer *Gen);

6 The Objective-C language has a similar constructs with its ”Protocols”. Several classes can share
a common interface without any inheritance between them. Obviously in C there is no compiler support
for this kind of programming, what forces your implementation to be careful about the order of the
function pointers within all objects. A change in the order of those function pointers makes the object
incompatible with the protocol specifications, and this can’t be checked by the compiler. All of this can
be avoided, of course, if you just use the protocols designed and implemented by someone else.

"Two special cases of specialized arrays have been presented: an array of strings and an array of
bits. Many other arrays are possible and surely necessary for numeric work, and they could be used as
basis for vector extensions with hardware support. Another subject not mentioned in this specification
is multi-dimensional arrays.

150

4.13.2

4.13. The generic interfaces

Iterator *(*newlterator) (GenericContainer *Gen);
int (*deletelterator) (Iterator x*);
int (xSave) (GenericContainer *Gen,FILE *stream,
SaveFunction saveFn,void *arg);
GenericContainer *(*Load) (FILE *stream,
ReadFunction readFn,void *arg);
size_t GetElementSize(GenericContainer *Gen);
} GenericContainerInterface;
extern GenericContainerInterface iGenericContainer;

This functions return the obvious results already described in the documentation of their
container-specific counterparts and not repeated here. We only note the absence of a
creation function, or any means to add an object.

Based on the generic interface, we have generic sequential and associative interfaces.
They contain generic functions for adding and removing objects.

Sequential containers

These containers include all the functions of the GenericContainer interface, adding
functions to use any sequential container as a stack, and functions for managing object
replacement or addition.

typedef struct SequentialContainer SequentialContainer;
typedef struct tagSequentialContainerInterface {
GenericContainerInterface Generic;
int (*Add) (SequentialContainer *SC,void *Element) ;
void *(xGetElement) (SequentialContainer *SC,size_t idx);
int (*Push) (SequentialContainer *Gen,void *Element);
int (*Pop) (SequentialContainer *Gen,void *result);
int (xInsertAt) (SequentialContainer *SC,size_t idx, void #*newval);
int (*EraseAt) (SequentialContainer *SC,size_t idx);
int (*ReplaceAt) (SequentialContainer *SC,
size_t idx, void *element);
int (*Index0f) (SequentialContainer *SC,
void *ElementToFind,size_t *result);
int (*Append) (SequentialContainer *SC1,SequentialContainer *SC2);
} SequentialContainerInterface;
extern SequentialContainerInterface iSequentialContainer;

8The ”Erase” function has been added to the generic interface because it has the same interface
both in associative and sequential containers.The ”Add” function was left out because in associative
containers you need a key argument to add data. This could have been fixed by defining a structure
with two fields that would be passed as a single argument, but that would make things more complex
than they need to be

151

4. THE CONTAINERS

4.13.3 Associative containers

These containers include all the functions of the GenericContainer interfaces and add
functions for inserting and removing objects.

typedef struct AssociativeContainer AssociativeContainer;
typedef struct tagAssociativeContainerInterface {
GenericContainerInterface Generic;
int (*Add) (SequentialContainer *SC,void *key,void *Element) ;
void *(*GetElement) (AssociativeContainer *SC,void *Key);
int (*Replace) (AssociativeContainer *SC, void *Key, void *element);
} AssociativeContainerInterface;
extern AssociativeContainerInterface iAssociativeContainer;

152

5

Enhancing the library

No design can ever cover all special cases that can arise during development. The advan-
tage of the interface design is that you can enhance the library by subclassing functions
that add functionality you need when absent. Subclassing means in this context that
you replace a function of the library with a new function written by you that either
replaces completely the functionality of the library or that either before or after the
library function adds some code that implements an enhancement.

There are several ways to enhance the library in this way:

1. Replace the function in the container interface object. This affects all containers
of this type, including those that are already created. This involves simply assign-
ing to the function you want to replace a new function pointer that points to a
compatible function. You can save the old value and add some functionality, call
the old function pointer to do what the library does, then you can add code that
runs after the old library function has finished.

2. Replace the function in a copy of the functions table of a single object. This way is
less intrusive than the former, since only one container is affected: the one where
you modify the function table. The downside is that instead of using the simple
syntax:

ilList.Add
you have to use the container’s table:
Container->VTable->Add(...)

This represents quite a different syntax, but this can be less of a problem if you
hide it under some convenient macros .

On the up side, another advantage of this syntax is that you do not need to change
your source code if you change the type of the container. If you write:

myContainer->Vtable->Add (myContainer,object);

this will stay the same for lists, arrays, string collections or whatever sequential
container you are using. You can then change completely the type of the container
just by changing the declaration.

'For instance you can use iList_Add for iList.Add, or similar conventions. The specifications of
the library do not define those macros to avoid invasion of the user’s name space

153

6.1

Applications

Mapcar

The lisp function "mapcar” produces a map by applying a given function to each element
of a list.

(mapcar #’abs (3 -4 2 -5 -6)) => (3 4 2 5 6)

We can reproduce this function by using ”Apply”. In the extra argument we pass a
structure of two members:

e A function to call (in the above example it would be a function to calculate the
absolute value)

e A list container where the result would be stored

Our function receives then (as all functions called by Apply) two arguments, the element
and a pointer to our structure. Here is a sketch of how could it be done:

#include <containers.h>
struct MapcarArgs {
void *(*fn) (void *);
List *Result;
+;

We keep some generality by using a general prototype and definition for the function we
are using. We could have defined the callback as:

int (*fn) (int *);

That prototype would have been unusable for lists that use doubles, for instance. With
the current definition we can use this "MapcarArgs” structure with any other list.

The actual function we are calling encapsulates all knowledge about the data stored
in the list and the operation we perform with that data. The other parts of the software
do not need to know anything about it. It returns a static pointer to the result of the
operation it performs using the given element as data that will be overwritten at each
call. The intended usage is to save that result before making the next call. It can be
defined as follows:

155

6. APPLICATIONS

void *DoAbsValue(void *element)

{
static int result = *x(int *)element;
if (result < 0)
result = -result;
return &result;
+

/* This function will be directly called by "Apply". */
static int Applyfn(void *element, struct MapcarArgs *args)
{

void *result = args->fn(element);

int r = iList.Add(args->Result,result);

return r;
}
List *mapcar(List *1i,void *(*fn) (void *))
{
struct MapcarArgs args;
args.fn = fn;
args.Result = ilList.Create(ilList.GetElementSize(1i));
if (args.Result == NULL)
return NULL;
iList.Apply(1li,Applyfn, (void *)&args);
return args.Result;
}
int main(void)
{
List *1i = ilList.Create(sizeof(int));
List *newlList;
int i;
int tab[] = {3,-4,2,-5,6};
for (i=0; i<5;i++) {
ilist.Add(1i,&tab[i]);
}
newList = mapcar(li,DoAbsValue);
}

Still, our version of mapcar is still specific to lists. A more general version would use
a sequential container to make a mapcar function that would be able to work with any

type of sequential container.

The basic idea is to provide an empty container of the desired result type as an extra
argument to mapcar. We use an iterator instead of ” Apply”, obtaining a single compact
function that will take any sequential container as input an add the result of the function

156

6.1. Mapcar

to any type of sequential container.

int mapcar(SequentialContainer *src, /* The source container */
void *(xfn) (void *),/* Function to call with each element */
SequentialContainer *result) /* The resulting container */

Iterator *it = iSequentialContainer.newlterator(src);
int r=1;
void *obj;
if (it == NULL)
return CONTAINER_ERROR_NOMEMORY;
for (obj = it->GetFirst(it);
obj != NULL;
obj = it->GetNext(it)) {
void *tmp = fn(obj);
int r = iSequentialContainer.Add(result,tmp);
if (r < 0) {
/* In case of any error return a partial result
and the error code */
break;

}
deletelterator(it);
return r;

by

Other similar functions can be built from this model. For instance ”mapcon”, a function
that needs two containers to build a resulting container. The result is made out of the
results of a binary function that will receive one element from each container.

Its implementation is trivially deduced from the above function:

int mapcon(SequentialContainer *srcl,*src2, /* The input containers */
void *(*fn) (void *,void *), /* Function with 2 arguments */
SequentialContainer *result) /* The resulting container */

Iterator *itl = iSequentialContainer.newIterator(srcl);
Iterator *it2 = iSequentialContainer.newIterator(src2);
int r=1;
void *objl,*0obj2;
if (it == NULL)
return CONTAINER_ERROR_NOMEMORY;
if (iSequentialContainer.GetElementSize(srcl) !=
iSequentialContainer.GetElementSize(src2)) {
return CONTAINER_ERROR_INCOMPATIBLE;

157

6. APPLICATIONS

for (objl = itl->GetFirst(itl),obj2 = it2->GetFirst(it2);

obj1l != NULL && obj2 != NULL;

obj2 = it2->GetNext(it2),

obj1 = it1->GetNext(it1)) {

void *tmp = fn(objl,o0bj2);

int r = iSequentialContainer.Add(result,tmp);

if (r < 0) {
/* In case of any error return a partial result
and the error code */
break;

}
deletelterator(itl);
deletelterator(it2);
return r;

by

We can use it with a function that adds its two arguments to add two containers:

void *DoAdd(void *elementl,void *element?2)

{
static int result = *(int *)elementl + *(int *)element2;
return &result;

b

Note that not all errors are detected, and we stop at the smallest container, producing
a result compatible with the smallest of both arguments. Note too that we make a very
superficial compatibility test to see if the arguments contain the same type of object,
using their size as an indication. This test would ignore elements of the same size
but incompatible, for instance floats and 32 bit integers, or 64 bit integers and double
precision elements, etc.

The standard answer to the above problems is to point out that C has a tradition of
keeping things simple and expecting programmers that take care of low level details. If
you want more error support, you will find out with minimal research a lot of languages
ready to make all kinds of hand holding for you.

158

7.1

7.1.1

The sample implementation

The objective of the sample implementation is to serve as a guide for the implementers
of this proposal. It is not the fastest implementation and it is not the most efficient or
compact one. As any other software, it contains bugs, that I hope to iron out with time.

Data structures
All container data structures are composed of two parts:

1. A header part, containing a pointer to the functions table and some other fields.
This 'generic’ part is at the start of all container header structures.

2. A container specific part, containing auxiliary structures and data needed for the
specific container at hand.

The generic part

The first part of all container data structures is the same for each container. This allows
to implement conceptually an abstract class of objects: the 'generic’ container.

struct GenericContainer {
GenericContainerInterface *vTable;
size_t Size;
unsigned Flags;
size_t ElementSize;

1. Vtable. All containers in the sample implementation contain a pointer to the
table of functions of their interface.

2. Size. The number of elements this container stores.

3. Flags. Stores the state of the container. The only flag the sample implementation
uses is the READ_ONLY_FLAG but many others are possible, for instance a 'locked’
flag for multi-threading access, or a ’copy on write’ flag for lazy copy, etc.

159

7.1.2

7. THE SAMPLE IMPLEMENTATION

4. ElementSize. All containers in the sample implementation can store objects of the
same size. This is not really a limitation since you can store objects of ANY size
by storing a pointer in the container. An alternative design would store objects of
any size but it would need to store the size of each object in addition to the data
used by the object. The specialized containers like bitstrings, string collections or
integer/double arrays do not need this field obviously, and its presence is optional.

Lists

Single linked lists use a single pointer to the next element. The data for the element
comes right behind that pointer to avoid the overhead that yet another pointer would
represent.

typedef struct _list_element {

struct _list_element *Next;

char Data[MINIMUM_ARRAY_INDEX] ; // See below
} list_element;

The list header uses this structure to store the elements!. As you can see, there is no
space wasted in a pointer to the element stored. The element stored is placed just behind
the Next pointer. The downside of this decision is that we can’t recycle this object to
store other different objects of different size.

struct _List {
ListInterface *VTable;
size_t count;
unsigned Flags;
unsigned timestamp;
size_t ElementSize;
list_element *Last;
list_element *First;
CompareFunction Compare;
ErrorFunction RaiseError;
ContainerHeap *Heap;
ContainerMemoryManager *Allocator;

}s

In the public containers.h header file we refer always to an abstract structure List.
We define it here. This schema allows other implementation to use the same header
with maybe radically different implementations of their data structure.

!The constant MINIMUM_ARRAY_INDEX is defined as 1 if we are compiling in C90 mode or as nothing
if we are compiling in C99 mode. In C99 mode we have a flexible structure, that consists of a fixed and
a variable part. The fixed part is the pointer to the next element. The variable part is the object we
are storing in the list.

160

7.1.3

7.1. Data structures

1. Vtable, count, Flags, ElementSize. This fields were described in the generic
container section.

2. timestamp. This field is incremented at each modification of the list, and allows
the iterators to detect if the container changes during an iteration: they store
the value of this field at the start of the iteration, and before each iteration they
compare it with its current value. If there are any changes, they return NULL .

3. Last. Stores a pointer to the last element of the list. This allows the addition
of an element at the end of the list to be fast, avoiding a complete rescan of the
list. This field is an optimization, all algorithms of a single linked list would work
without this field.

4. First. The start of the linked list.
5. Compare. A comparison function for the type of elements stored in the list.

6. RaiseError. A function that will be called when an error occurs. This field is
necessary only if you want to keep the flexibility of having a different error function
for each list that the client software builds. An alternative implementation would
store a pointer to an error function in the interface.

7. Allocator. A set of functions that allocates memory for this list. In an imple-
mentation that needs less flexibility and is more interested in saving space it could
be replaced by the default allocator.

The sample implementation has certainly a quite voluminous header because of a design
decision to keep things very flexible. Other implementations could trim most of the fields,
and an absolute minimal implementation would trim Last, Compare, RaiseError, Heap,
and Allocator. If the implementation assumes that only one iterator per container is
allowed, the timestamp field could be replace by a single bit (’changed’) in the Flags
field.?

Double linked lists
This container has a very similar structure to the single linked ones

typedef struct _dlist_element {
struct _dlist_element *Next;
struct _dlist_element *Previous;
char Data[MINIMUM_ARRAY_INDEX] ;
} dlist_element;

2The function newContainer would clear the ’changed’ bit, and the iterator functions would test
if it is still clear. All modifications function would set it to one. This simple schema becomes prob-
lematic when you consider what happens when an invalid iterator is used again. In the simple one bit
schema if the flag has been cleared, the iterator goes on, in the more expensive schema of the sample
implementation, the stalled iterators are never restartable until the counter wraps around to the same
value.

161

7. THE SAMPLE IMPLEMENTATION

We have now two pointers followed by the stored data. All other fields are exactly
identical to the ones in the single linked list. The single difference is the existence of a
free list. This could have been done in the single linked list implementation too.

struct Dlist {
DlistInterface *VTable;
size_t count;
unsigned Flags;
unsigned timestamp;
size_t ElementSize;
dlist_element *Last;
dlist_element *First;
dlist_element *FreelList;
CompareFunction Compare;
ErrorFunction RaiseError;
ContainerHeap *Heap;
ContainerMemoryManager *Allocator;

}s

7.1.4 \Vector

Arrays are the containers that use the smallest overhead per element: zero. The only
overhead is the header structure, whose cost is amortized since it is fixed for all elements
that the array can hold.

This is a 'flexible’ array however, what means that there is some spare space allocated
for allowing further growth, and that different allocation strategies can be followed when
allocating a new chunk of array space when the existing array is full.

struct _Vector {
VectorInterface *VTable;
size_t count;
unsigned int Flags;
size_t ElementSize;
void *contents;
size_t capacity;
unsigned timestamp;
CompareFunction CompareFn;
ErrorFunction RaiseError;
ContainerMemoryManager *Allocator;

1. Vtable, count, Flags, ElementSize. This fields were described in the generic
container section.

2. CompareFn, RaiseError, timestamp and Allocator were described in the List
container.

162

7.1.5

7.1. Data structures

3. capacity. Stores the number of elements this container can hold without resizing.

4. contents. Points to an array of capacity elements, each of size ElementSize.

Dictionary

This container consists of an array of single linked lists. It could have been done with
an Vector of List containers but a dedicated implementation is justified because of
a greater efficiency. The advantages of the Vector container (secured access, flexible
expansion) are not needed since the array has a fixed length that never changes.

struct _Dictionary {

DictionarylInterface *VTable;
size_t count;
unsigned Flags;
size_t size;
ErrorFunction RaiseError;
unsigned timestamp;
size_t ElementSize;
ContainerMemoryManager *Allocator;
unsigned (*hash) (const unsigned char *Key);
struct DatalList {
struct Datalist *Next;
unsigned char *Key;
char *Value;
} **xbuckets;

. Vtable, count, Flags, ElementSize. This fields were described in the generic

container section.

. RaiseError, timestamp and Allocator were described in the List container.
. capacity. Stores the number of elements this container can hold without resizing.

. size. The number of different lists that the hash table can contain. This is

normally a prime number.

. hash. A hash function for character strings.

. buckets. A table of pointers to lists of DataList structures.

7.1.6 String collection

String collections are just flexible arrays of pointers to C character strings. They share
all the fields of the Vector container, the only specific field is a context that is passed to

163

7. THE SAMPLE IMPLEMENTATION

the string comparison function. This context can contain flags or other information to
use with special text encodings (wide characters for instance) or other data like regular
expressions, etc.

struct StringCollection {
StringCollectionInterface *VTable;
size_t count;
unsigned int Flags;
unsigned char **contents;
size_t capacity;
size_t timestamp;
ErrorFunction RaiseError;
StringCompareFn strcompare;
CompareInfo *StringCompareContext;
ContainerMemoryManager *Allocator;

}s

7.1.7 The iterator data structure
This data structure has two main parts:

e A public part declared in containers.h:

typedef struct _Iterator {
void *(*xGetNext) (struct _Iterator x);
void *(*xGetPrevious) (struct _Iterator *);
void *(*GetFirst) (struct _Iterator *);
void *(*GetCurrent) (struct _Iterator *);
void *(*GetLast) (struct _Iterator *);
void *(*CopyCurrent) (struct _Iterator *);

} Iterator;

This part contains only the functions that the interface offers.

e A private, container specific part that comes right behind the public part and
stores additional information that is needed for each container. For instance the
list container will add following fields:

struct ListIterator {
Iterator it;
List *L;
size_t index;
list_element *Current;
size_t timestamp;
char ElementBuffer[1];

164

7.2

721

7.2. The code

User code should only see and use the public part, as if the iterator was only the
public part. Internally all iterator functions are completely different functions,
specific for the container they should iterate. It looks like from user code, as you
were always calling the same function because the syntax and name is the same.
This allows for a certain abstraction in the source code that uses this functions,
allowing to express a whole range of algorithms in terms of general concepts.

Each of the functions that implement GetNext GetFirst, etc starts with a cast
of the input argument that is declared as an Iterator structure to a concrete
container iterator like our ListIterator above.

In all those structures there is a common ground. They have:

1. A pointer to the container the iterator is using.

2. Some fields for storing the current position within the container, i.e. a cursor.
3. A timestamp field to detect if the container has changed during the iteration.
4,

A buffer that allows the iterator to store an element of the container fore
returning a pointer to this area that contains a copy of the current element
instead of a pointer directly to the element data. This allows to maintain the
read only semantics.

There is currently no way to know when you delete a container if there are iterators
that are using it. This could be detected by simply having a counter of the number of
iterators a container has, but that would mean more overhead for the already fat header
objects...

The code

Only one container will be shown here in full: the List container. For the others, only
some functions will be explained to save space. You are invited to read the distributed
code of course that is part of this work.

List

Add

static int Add(List *1,void *elem)
{

list_element *newl;

/* Error checking ellided */

newl = new_link(1l,elem,"ilList.Add");

if (newl == NULL) return CONTAINER_ERROR_NOMEMORY;
if (1->count == 0) { /* 1 %/

165

7. THE SAMPLE IMPLEMENTATION

1->First = newl;
}
else {
1->Last->Next = newl;
}
1->Last = newl;
1->timestamp++;
++1->count; /* 2 *x/
return 1;

}

This function adds one element at the end. If the list is empty it just establishes the start
of the list, if not, it adds it after the last element and makes the new list element the
last. Errors leave the list unchanged. Exclusive access to the list is needed between the
point marked (1) and the point marked (2) in the code. This operation is a modification
of the list, and it needs to update the timestamp value to notify possible iterators that
they are invalid.

AddRange

static int AddRange(List * AL,size_t n, void *data)
{

unsigned char *p;

list_element *oldLast;

/* Error checking snipped */
p = data;
oldLast = AL->Last;
while (n > 0) {
int r = Add(AL,p);
if (r <0) {
AL->Last = oldLast;
if (AL->Last)
AL->Last->Next = NULL;
return r;
}
p += AL->ElementSize;
n--;
}
return 1;

by

This function calls repeatedly Add for each element of the given array. Note that at
compile time we do not know the size of each element and we can’t index into this array.
We just setup a generic pointer to the start of the data area, and increment it by the

166

7.2. The code

size of each element at each iteration. This implementation supposes that the size of
the elements as assumed by the list is the same as the size of then element as assumed
by the calling program.

If an error occurs when adding elements the new elements are discarded.

Append

static int Append(List *11,List *12)
{

/* Error checking elided */
if (11->count == 0) {
11->First = 12->First;
11->Last = 12->Last;
}
else if (12->count > 0) {
if (12->First)
11->Last->Next = 12->First;
if (12->Last)
11->Last = 12->Last;
}
11->count += 12->count;
l1->timestamp++;
12->Allocator—>free(12);
return 1;

}

This function adds the second argument list to the first one. The second list is destroyed
because all its elements are inserted into the first one. The result is obtained by pointer
manipulation: no data is moved at all, and any pointers to the objects in the second list
remain valid.

Apply

static int Apply(List *L,int (Applyfn) (void *,void *),void *arg)
{

list_element *le;

void *pElem=NULL;

/* Null error checking ellided */
le = L->First;
if (L->Flags&CONTAINER_LIST_READONLY) {
pElem = malloc(L->ElementSize);
if (pElem == NULL) {
L->RaiseError("iList.Apply",CONTAINER_ERROR_NOMEMORY) ;

167

THE SAMPLE IMPLEMENTATION

b

This function calls the given function for each element. If the container is read only,
a copy of each element is passed to the called function. This copy is allocated with
"malloc” because it is used for internal purposes, and the standard allocator for the list
could be a heap based, i.e. one that doesn’t really free any memory. That could be a

return CONTAINER_ERROR_NOMEMORY;

}
while (le) {
if (pElem) {
memcpy (pElem,le->Data,L->ElementSize) ;
Applyfn(pElem,arg) ;
+
else Applyfn(le->Data,arg);
le = le->Next;
+
if (pElem)
free(pElem) ;
return 1;

problem if repeated calls to Apply are done.

Clear

This function does not pass any pointer to the called function to mark the list as
changed if the data passed to it is rewritten. This means that there is no way to let the
called function inform the rest of the software of any modifications. This can be justified
by the fact that only the data, not the container itself can be modified, but this can be
tricky in multi-threaded environments. Other implementations could pass some pointer
or away to inform the rest of the software that a modification has been done.

static int Clear(List *1)

{

168

if (1->Heap)
iHeap.Destroy(1->Heap) ;
else {
list_element *rvp = 1->First,*tmp;
while (rvp) A
tmp = rvp;
rvp = rvp—>Next;
1->Allocator->free(tmp) ;

}
1->count = 0;
1->Heap = NULL;

7.2. The code

1->First = 1->Last = NULL;

1->Flags = O;
1->timestamp = O;
return 1;

}

This function should clear all stored elements and reset some fields of the header structure
so that the resulting list header is almost the same as when it was created. The only
difference is that any functions like the comparison function or the error function are
not cleared. If they were changed by the user they still remain changed.

Copy

static List *Copy(List *1)
{
List *result;
list_element *elem,*newElem;

/* Null error checking ellided */

result = ilist.CreateWithAllocator(1->ElementSize,1->Allocator);
if (result == NULL) {

1->RaiseError("iList.Copy",CONTAINER_ERROR_NOMEMORY) ;

return NULL;
}
result->Flags = 1->Flags; /* Same flags */
result->VTable = 1->VTable; /* Copy possibly subclassed methods */
result->Compare = 1->Compare; /* Copy compare function */
result->RaiseError = 1->RaiseError;
elem = 1->First;
while (elem) {

newElem = new_link(result,elem->Data,"ilList.Copy");

if (newElem == NULL) {

1->RaiseError("iList.Copy",CONTAINER_ERROR_NOMEMORY) ;
result->VTable->Finalize(result);
return NULL;
}
if (elem == 1->First) {
result->First = newElemn;

}
else {

result->Last->Next = newElem;
}

result->Last = newElem;
elem = elem—>Next;

169

7. THE SAMPLE IMPLEMENTATION

result->count++;

3

return result;

b

This function requires a non null list pointer. It creates a header structure, and fills
some of it fields with the corresponding fields of the source list:

1. The allocator
2. The flags.

3. The table of functions. This is necessary in case some of those functions have been
sub-classed.

4. The comparison function
5. The error function

If an error occurs during the copy, probably because of lack of memory, the new list is
destroyed and the result is NULL . Otherwise elements are added at the growing end of
the list.

Contains

static int Contains(List *1,void *data)

{

size_t idx;
return (Index0f(1l,data,NULL,&idx) < 0) ? 0 : 1;
+

The Contains function is just a cover function for IndexOf.

CopyElement

static int CopyElement(List *1,size_t position,void *outBuffer)

{

list_element *rvp;

/* Error checking ellided */
rvp = 1->First;
while (position) {
rvp = rvp—>Next;
position——;
}
memcpy (outBuffer,rvp->Data,l->ElementSize) ;
return 1;

170

7.2. The code

After the error checking, this function positions at the given element and copies its
contents into the given buffer. Other designs are obviously possible.

Create

e This function could return a newly allocated buffer. This poses other problems like

the type of allocator to use. If we use the list allocator we could run into problems
if it is a specialized allocator that is designed for allocating list elements from a
pool where no ’free’ operation exists. Another, more important problem with that
solution is that it forces an allocation when none is necessary if the buffer you use
is stack based.

The function could require the buffer length to be sure there are no buffer overflows.
This solution was discarded because it actually increases the chances of errors: you
have to pass the size of the buffer, and if you pass the wrong one more problems
arise. Is it an error if you pass more space than is actually needed? It could be
an error if the passed size differs from the size of the elements stored or it could
be just a consequence that you used the sizeof (buffer) expression with a bigger
buffer than necessary.

static List *Create(size_t elementsize)

{

}

return CreateWithAllocator(elementsize,CurrentMemoryManager) ;

This function just calls CreateWithAllocator using the current memory manager.

CreateWithAllocator

static List *CreateWithAllocator(size_t elementsize,

{

ContainerMemoryManager *allocator)
List *result;

if (elementsize == 0) {
iError.RaiseError("ilList.Create" ,CONTAINER_ERROR_BADARG) ;
return NULL;

}

result = allocator->malloc(sizeof(List));

if (result == NULL) {
iError.RaiseError("ilList.Create",CONTAINER_ERROR_NOMEMORY) ;
return NULL;

}

memset (result,0,sizeof (List));

result->ElementSize = elementsize;

171

7. THE SAMPLE IMPLEMENTATION

result->VTable = &ilList;

result->Compare = DefaultListCompareFunction;
result->RaiseError = iError.RaiseError;
result->Allocator = allocator;

return result;

}

After doing some error checking, the creation function allocates and initializes the new
container with its default values.

A big question is the alignment problem for the given size. This can’t be checked
and could lead to problems if you pass to this function any argument that is not the
product of a sizeof expression.

DefaultListCompareFunction

static int DefaultListCompareFunction(const void *left,
const void *right,
CompareInfo *ExtraArgs)

size_t siz=((List *)ExtraArgs->Container)->ElementSize;
return memcmp(left,right,siz);

}

The default element compare function is just a cover for memcmp. It is assumed that the
user will replace it with a comparison function of its own if necessary.

DefaultListLoadFunction

static size_t DefaultLoadFunction(void *element,void *arg, FILE *Infile)
{

size_t len = *(size_t *)arg;

return fread(element,1,len,Infile);

}

This function just reads an element from the disk file. Returns the result value of fread,
what is OK for our purposes.

DefaultSaveFunction

static size_t DefaultSaveFunction(const void *element,void *arg,
FILE *Qutfile)
{
const unsigned char *str = element;
size_t len = *(size_t *)arg;

172

7.2. The code

return fwrite(str,1,len,Outfile);

b

This function just writes the given element to the disk. Together with the default load
function they allow for a very effective serialization package for containers. Obviously
here we have a shallow copy, and all this will never work for recursive saves, i.e. for
elements that contain pointers.

deletelterator

static int deletelterator(Iterator *it)

{
struct ListIterator *1i;
List *L;
if (it == NULL) A
iError.RaiseError("deletelterator",CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;
}
1li = (struct ListIterator *)it;
L = 1i->L;
L->Allocator->free(it);
return 1;
}

This routine retrieves the list header object from the hidden part of the iterator and
uses its allocator object to free the memory used by the iterator.

The functions newIterator and deletelterator should occur in pairs like many
others in C: malloc and free, fopen and fclose, etc. It would be very easy to have in the
header object a counter of iterators that should be zero when the list is destroyed or
cleared.

Equal

static int Equal(List *11,List *12)
{
list_element *1inkl,*1ink2;
CompareFunction fn;
CompareInfo ci;

if (11 == 12)

return 1;

if (11 == NULL || 12 == NULL)
return O;

if (11->count != 12->count)

173

7. THE SAMPLE IMPLEMENTATION

return O;
if (11->ElementSize !'= 12->ElementSize)
return O;
if (11->Compare != 12->Compare)
return O;
if (11->count == 0)
return 1;
fn = 11->Compare;
linkl = 11->First;
1link2 = 12->First;
ci.Container = 11;
ci.ExtraArgs = NULL;
while (linkl && 1link2) {
if (fn(link1->Data,link2->Data,&ci))
return O;
linkl = link1->Next;

link2 = link2->Next;
}
if (linkl || 1ink2)
return O;
return 1;

}

If two null pointers are passed to the Equal function it returns true. This is a design
decision: Equal doesn’t have any error result. Either the two objects are equal or not.

A redundant test is done at the end of the function: if the lists have the same count
and all elements are equal, linkl and link2 should be NULL . If they aren’t that means
there is a memory overwrite problem somewhere...

Erase

static int Erase(List *1,void *elem)
{

size_t idx;

int i;

if (1 == NULL) {
iError.RaiseError("ilList.Erase",CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;

}

if (elem == NULL) {
1->RaiseError("iList.Erase" ,CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;

174

7.2. The code

if (1->count == 0) {
return CONTAINER_ERROR_NOTFOUND;

}
i = Index0f(1,elem,NULL,&idx);
if (i < 0)

return i;
return RemoveAt(l,idx);

}

This is a very inefficient implementation. The list will be traversed twice, the first by
Index0f, and the second by RemoveAt. The obvious solution is to merge both into one
function.

EraseRange

static int EraseRange(List *1,size_t start,size_t end)
{
list_element *rvp,*start_pos,*tmp;
size_t toremove;
if (end > 1->count)
end = 1->count;
if (start >= 1->count)
return O;
if (start >= end)
return O;
toremove = end - start+i;
rvp = 1->First;
while (rvp && start > 1) {
rvp = rvp—>Next;
start——;
}
start_pos = rvp;
rvp = rvp—>Next;
while (toremove > 1) {
tmp = rvp->Next;
if (1->Heap)
iHeap.AddToFreeList (1->Heap,rvp) ;
else {
1->Allocator->free(rvp);
}
rvp = tmp;
toremove——;
1->count--;

175

7. THE SAMPLE IMPLEMENTATION

start_pos—->Next = rvp;
return 1;

}

This function positions the cursor * at the element before the one where the range starts,
and then erases until it reaches the end of the range.

Finalize

static int Finalize(List *1)
{
int t=0;

t = Clear(l);
if (¢t < 0)

return t;
1->Allocator->free(l);
return 1;

3

This function should free the memory used by the header object. It is fundamental that
this will never be done with an object not allocated with that iterator in the first place,
i.e. when the user has called Init instead of Create. This can’t be tested in a portable
manner since there is no function to verify that a given memory space belongs or not to
a given allocator.*

GetCurrent

static void *GetCurrent(Iterator *it)

{

struct ListIterator *1i = (struct ListIterator *)it;

if (li->L->count == 0)
return NULL;

if (li->index == (size_t)-1) {
li->L->RaiseError("GetCurrent" ,CONTAINER_ERROR_BADARG) ;
return NULL;

}

if (1i->L->Flags & CONTAINER_LIST_READONLY) {
return li->ElementBuffer;

}

return 1i->Current->Data;

3Very often I use the name "rvp” for roving pointer
4This has been discussed several times in the comp.lang.c discussion group, but the committee never
followed any of those proposals

176

7.2. The code

}

Returns the current object pointed by the given iterator. This function should be called
only after GetFirst is called. It verifies this by testing if a correct value is stored in the
index field. This value is stored by the newIterator function. This simple algorithm
avoids the usage of an uninitialized iterator at the cost of one integer comparison per
call.

GetFirst
static void *GetFirst(Iterator *it)
{
struct ListIterator *1i = (struct ListIterator *)it;
List *L;
L = 1i->L;
if (L->count == 0)
return NULL;
if (li->timestamp != L->timestamp) {
L->RaiseError("iList.GetFirst",CONTAINER_ERROR_OBJECT_CHANGED) ;
return NULL;
}
li->index = O;
1li->Current = L->First;
if (L->Flags & CONTAINER_LIST_READONLY) {
memcpy (1i->ElementBuffer,L->First->Data,L->ElementSize) ;
return li->ElementBuffer;
}
return L->First->Data;
}

This function should set the iteration at the first element of the container, ready to get
the iteration started. After the error checking phase it returns a pointer to the data in
the first element, or a pointer to a copy of that data if the container is read only.

GetFlags

static unsigned GetFlags(List *1)
{
if (1 == NULL) A{
iError.RaiseError("iList.GetFlags" ,CONTAINER_ERROR_BADARG) ;
return (unsigned)CONTAINER_ERROR_BADARG;
}

return 1->Flags;

177

7. THE SAMPLE IMPLEMENTATION

}

Just returns the value of the flags.

GetNext
static void *GetNext(Iterator *it)
{
struct ListIterator *1i = (struct ListIterator *)it;
List *L;
void *result;
if (1i == NULL) {
iError.RaiseError("ilList.GetNext" ,CONTAINER_ERROR_BADARG) ;
return NULL;
}
L = 1i->L;
if (li->index >= (L->count-1) || li->Current == NULL)
return NULL;
if (1i->L->count == 0)
return NULL;
if (li->timestamp != L->timestamp) {
L->RaiseError("GetNext" ,CONTAINER_ERROR_OBJECT_CHANGED) ;
return NULL;
}
1i->Current = li->Current->Next;
li->index++;
if (L->Flags & CONTAINER_LIST_READONLY) {
memcpy (li->ElementBuffer,li->Current->Data,L->ElementSize) ;
return li->ElementBuffer;
}
result = 1li->Current->Data;
return result;
}

Advances the cursor to the next element and returns either a pointer to it or a pointer to
a copy if the list is read only. The test for the cursor being NULL avoids using GetNext
with an uninitialized iterator.

GetPrevious

static void *GetPrevious(Iterator *it)

{

struct ListIterator *1i = (struct ListIterator *)it;

178

7.2. The code

List *L;

list_element *rvp;

size_t 1i;

L = 1i->L;

if (1i->index >= L->count || li->index == 0)

return NULL;

if (li->timestamp != L->timestamp) {
L->RaiseError("GetPrevious",CONTAINER_ERROR_OBJECT_CHANGED) ;
return NULL;

}

rvp = L->First;
i=0;
li->index—-;

if (li->index > 0) {
while (rvp && i < li->index) {
rvp = rvp—>Next;
i++;

}
li->Current = rvp;
return rvp->Data;

}

There were heated discussions about this function. In single linked lists it is necessary to
go through the whole list at each call to this function. This is extremely inefficient and its
usage should be avoided, it is much better to use double linked lists if you are interested
in bi-directional cursor positioning. In the other hand this should be a required iterator
feature, and rather than filling this function pointer with a function that just returns an
error, the user is better served with a function that actually returns the previous item.
Besides for short lists the performance lost is quite small, and would justify using lists

with smaller overhead per item.’.

GetRange

static List *GetRange(List *1,size_t start,size_t end)
{

size_t counter;

List *result;

list_element *rvp;;

result = ilList.Create(1->ElementSize);

5But then, if the lists are small, the greater overhead of the double linked lists is small too. You
see, there were a lot of good arguments from both sides

179

7. THE SAMPLE IMPLEMENTATION

result->VTable = 1->VTable;
if (1->count == 0)
return result;
if (end >= 1->count)
end = 1->count;
if (start > end || start > 1->count)
return NULL;
if (start == 1l->count-1)
rvp = 1->Last;
else {
rvp = 1->First;
counter = 0;
while (counter < start) {
rvp = rvp—>Next;
counter++;

+
while (start < end && rvp !'= NULL) {
int r = result->VTable->Add(result,&rvp->Data);

if (r < 0) {
Finalize(result);
result = NULL;
break;

}

rvp = rvp—>Next;

start++;

}
return result;

}

A new list is constructed from the given range of elements. The elements are copied.
Any error during the construction of the new list provokes a NULL result: the copied
elements are destroyed. Only correctly constructed ranges are returned. A recurring
problem arises because it is impossible to report any details about the error that stops
the copy. The result is actually boolean, either everything worked and there is a non
NULL result, or something didn’t.

An alternative design would have an integer return code, and a pointer to a result.
This option was discarded because it is cumbersome and the most likely reason for Add
to fail is lack of memory.

IndexOf

static int IndexOf (List *1,void *ElementToFind,
void *ExtraArgs,size_t *result)

180

7.2. The code

{
list_element *rvp;
int r,i=0;
CompareFunction fn;
CompareInfo ci;
if (1 == NULL || ElementToFind == NULL) {
if (1)
1->RaiseError("iList.Index0f",CONTAINER_ERROR_BADARG) ;
else
iError.RaiseError("iList.Index0f",CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;
}
rvp = 1->First;
fn = 1->Compare;
ci.Container = 1;
ci.ExtraArgs = ExtralArgs;
while (rvp) {
r = fn(&rvp->Data,ElementToFind,&ci);
if (r == 0) {
*result = i;
return 1;
}
rvp = rvp—>Next;
i++;
}
return CONTAINER_ERROR_NOTFOUND;
}

The design of this function went through several iterations. The big problem was the
result type: a size_t, that in most cases is an unsigned quantity. A negative error result
then was out of the question. But then, how would you indicate an error? ©

A first solution was to return a 1 based index and reserve zero for the 'not found’
value. That could work, but was the source of many bugs in the rest of the software
when the value was used without decrementing it first.

A second solution was to reserve a value within the size_t range to represent the 'not
found’ result. That works, and it is doable, but produced other, more subtle, problems
in the rest of the sofwtare since in all checks of a size_t, it could be that this size_t has
a value that is actually the sentinel value of Index0f: the tests tended to multiply and
the handling of those tests started to become a problem.

Here you see the third iteration: the function receives a pointer to a size_t that will
be set if the function returns with a result greater than zero.

6The function Contains started its life as a way of avoiding all this problems

181

7. THE SAMPLE IMPLEMENTATION

Another, completely different issue is the fact that in lists, this function is inefficient
since it forces the function that uses the result to restart a list traversal to access the nth
element. Much more efficient would be to do something immediately with the result,
or to return a list element that allows the calling software to use it without going again
through the list.

Problems with those solutions is that they are not portable, and that they would
expose the inner workings of the list container to the users. The 1ist_element structure
is not even mentioned in the public containers.h.

InitWithAllocator

static List *InitWithAllocator(List *result,size_t elementsize,
ContainerMemoryManager *allocator)
{
if (elementsize == 0) {
iError.RaiseError("ilList.Init",CONTAINER_ERROR_BADARG) ;
return NULL;
}
memset (result,0,sizeof (List));
result->ElementSize = elementsize;
result->VTable = &ilList;
result->Compare = DefaultListCompareFunction;
result->RaiseError = iError.RaiseError;
result->Allocator = allocator;
return result;

}

This function initializes a piece of storage to a list container. This allows the user to
use stack storage for the list container, saving an allocation from the heap, and the
corresponding need to free that storage.

Init

static List *Init(List *result,size_t elementsize)

{

return InitWithAllocator(result,elementsize,CurrentMemoryManager) ;

b

Uses the current memory manager to call InitWithAllocator.

InsertAt

static int InsertAt(List *1,size_t pos,void *pdata)
{

list_element *elem;

182

7.2. The code

if (1 == NULL || pdata == NULL) {
if (1)
1->RaiseError("ilList.InsertAt",CONTAINER_ERROR_BADARG) ;
else
iError.RaiseError("iList.InsertAt" ,CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;

if (pos > 1->count) {
1->RaiseError("iList.InsertAt",CONTAINER_ERROR_INDEX) ;
return CONTAINER_ERROR_INDEX;

if (1->Flags & CONTAINER_LIST_READONLY) {
1->RaiseError("iList.InsertAt",CONTAINER_ERROR_READONLY) ;
return CONTAINER_ERROR_READONLY;

if (pos == 1->count) {
return 1->VTable->Add(1,pdata);

elem = new_link(1l,pdata,"iList. InsertAt");

if (elem == NULL) {
1->RaiseError("iList.InsertAt",CONTAINER_ERROR_NOMEMORY) ;
return CONTAINER_ERROR_NOMEMORY;

}

if (pos == 0) {
elem->Next = 1->First;
1->First = elem;

b
else {
list_element *rvp = 1->First;
while (--pos > 0) {
rvp = rvp—->Next;
b
elem—>Next = rvp->Next;
rvp—>Next = elem;
}

1->count++;
1->timestamp++;
return 1;

This inserts before the given index. It would have been equally possible to insert after,
that is a more or less random decision.

183

7. THE SAMPLE IMPLEMENTATION

InsertIn

static int InsertIn(List *1, size_t idx,List *newData)
{

size_t newCount;

list_element *le,*nle;

if (idx > 1->count) {
1->RaiseError("iList.InsertIn",CONTAINER_ERROR_INDEX) ;
return CONTAINER_ERROR_INDEX,

}

if (1->ElementSize !'= newData->ElementSize) {
1->RaiseError("iList.InsertIn",CONTAINER_ERROR_INCOMPATIBLE) ;
return CONTAINER_ERROR_INCOMPATIBLE;

}

if (newData->count == 0)
return 1;

newData = Copy(newData);

if (newData == NULL) {
1->RaiseError("iList.InsertIn",CONTAINER_ERROR_NOMEMORY) ;
return CONTAINER_ERROR_NOMEMORY;

}

newCount = 1->count + newData->count;

if (1->count == 0) {
1->First = newData->First;
1->Last = newData->Last;

}
else {
le = 1->First;
while (le && idx > 1) {
le = le->Next;
idx--;
}
nle = le->Next;
le->Next = newData->First;
newData->Last->Next = nle;
}

newData->Allocator->free(newData) ;
1->timestamp++;

1->count = newCount;

return 1;

}

Inserts the given list at the specified position.

184

7.2. The code

Load

. Error checking. First argument must be non NULL and read/write. Second must

be non NULL .

. If the position given is exactly the same as the length of the receiving list, the

second list is just appended to the first one.

. Otherwise search the position and insert a copy of the elements in the second list.

static List #*Load(FILE *stream, ReadFunction loadFn,void *arg)

{

size_t i,elemSize;
List *result,L;
char x*buf;

int r;

guid Guid;

if (loadFn == NULL) {
loadFn = DefaultLoadFunction;
arg = &elemSize;

}

if (fread(&Guid,sizeof(guid),1,stream) <= 0) {
iError.RaiseError("ilList.Load",CONTAINER_ERROR_FILE_READ);
return NULL;

}

if (memcmp(&Guid,&ListGuid,sizeof(guid))) {
iError.RaiseError("ilList.Load",CONTAINER_ERROR_WRONGFILE) ;
return NULL;

}

if (fread(&L,1,sizeof(List),stream) <= 0) {
iError.RaiseError("ilList.Load",CONTAINER_ERROR_FILE_READ) ;
return NULL;

}

elemSize = L.ElementSize;

buf = malloc(L.ElementSize);

if (buf == NULL) {
iError.RaiseError("iList.Load",CONTAINER_ERROR_NOMEMORY) ;
return NULL;

}

result = ilList.Create(L.ElementSize);

if (result == NULL) {
iError.RaiseError("iList.Load",CONTAINER_ERROR_NOMEMORY) ;
return NULL;

185

7. THE SAMPLE IMPLEMENTATION

b
result->Flags = L.Flags;
r =1;

for (i=0; i < L.count; i++) {
if (loadFn(buf,arg,stream) <= 0) {
r = CONTAINER_ERROR_FILE_READ;

break;
+
if ((r=Add(result,buf)) < 0) {
break;
+
}
free(buf);
if (r < 0) {
iError.RaiseError("iList.Load",r);
ilist.Finalize(result);
result = NULL;
}

return result;

The load function is long and complex. As always, the process starts with error
checking. All streams written to by its counterpart Save are marked with a container
specific globally unique identifier (GUID). This ensures that a load function from the
list container will not crash if passed a file that belongs to an array or a dictionary.

Then, the header object is read, what gives the data to continue the process, since
we now know the number of elements and the size of each element.

A new list is created with the given element size, and we start reading count elements

from the stream. Any error provokes the destruction of the elements read so far and a
result of NULL.

newlterator

static Iterator *newlterator(List x*L)

{

struct ListIterator *result;

if (L == NULL) {
iError.RaiseError("ilist.newIterator",CONTAINER_ERROR_BADARG) ;
return NULL;

}

result = L->Allocator->malloc(sizeof (struct ListIterator));

if (result == NULL) {
L->RaiseError("iList.newlIterator",CONTAINER_ERROR_NOMEMORY) ;

186

7.2. The code

return NULL;
}
result->it.GetNext = GetNext;
result->it.GetPrevious = GetPrevious;
result->it.GetFirst = GetFirst;
result->it.GetCurrent = GetCurrent;
result->L = L;
result->timestamp = L->timestamp;
result->index = (size_t)-1;
result->Current = NULL;
return &result->it;

b

The creation of a new iterator involves just allocating and initializing values to their
defaults.

PopFront

static int PopFront(List *1,void *result)

{

list_element *le;

if (1->count == 0)

return O;
le = 1->First;
if (1->count == 1) {

1->First = 1->Last = NULL;
+
else 1->First = 1->First->Next;
1->count--;
if (result)

memcpy (result,&le->Data,l->ElementSize) ;
if (1->Heap) {

iHeap.AddToFreelList (1->Heap,le);
}
else 1->Allocator—->free(le);
1->timestamp++;
return 1;

}

Contrary to most versions of this function, PopFront does not return the data of the
element but stores it in a pointer that it receives. If the pointer is NULL , the data is
just discarded.

The problem with returning a pointer to the first element, is that the user code
should remember to discard it when no longer needed, and it should discard it using

187

7. THE SAMPLE IMPLEMENTATION

the same allocator that the list used to allocate it.

interface.

PushFront

That would be a very error prone

static int PushFront(List *1,void *pdata)

{

b

list_element *rvp;

rvp = new_link(1l,pdata,"Insert");
if (rvp == NULL)
return CONTAINER_ERROR_NOMEMORY;
rvp->Next = 1->First;
1->First = rvp;
if (1->Last == NULL)
1->Last = rvp;
1->count++;
1->timestamp++;
return 1;

Lists are a good base to implement a stack. PushFront and PopFront take a constant
and small time to complete and they would be much smaller if we would eliminate the
error checking.

RemoveAt

static int RemoveAt(List *1,size_t position)

{

188

list_element *rvp,*last,*removed;

rvp = 1->First;

if (position == 0) {
removed = 1->First;
if (1->count == 1) {

1->First = 1->Last = NULL;
+
else {
1->First = 1->First->Next;
+
}
else if (position == 1->count - 1) {

while (rvp->Next != 1->Last)
rvp = rvp—>Next;

7.2. The code

}

removed = rvp->Next;
rvp—>Next = NULL;
1->Last = rvp;

}
else {
last = rvp;
while (position > 0) {
last = rvp;
rvp = rvp—>Next;
position --;
+
removed = IVp;
last—>Next = rvp->Next;
+

if (1->Heap) {

iHeap.AddToFreelList (1->Heap,removed) ;
}
else 1->Allocator->free(removed);
1->timestamp++;
--1->count;
return 1;

The operation when RemoveAt is called with the index of the last element is equivalent
to the PopBack function, that is absent in the single linked list interface. After much
discussions, we decided that the generic interface would have only Push and Pop, and
that each container would fill those functions with the most efficient implementation
available for it. For lists, the most efficient implementation is PopFront and PushFront.
For arrays, the most efficient is PushBack and PopBack. For double linked lists is either.

ReplaceAt

static int ReplaceAt(List *1,size_t position,void *data)

{

list_element *rvp;

if (position == 1->count-1)
rvp = 1->Last;
else {

rvp = 1->First;

while (position) {
rvp = rvp—>Next;
position--;

189

7. THE SAMPLE IMPLEMENTATION

}

memcpy (&rvp->Data , data,l->ElementSize);
1->timestamp++;

return 1;

}

After error checking (not shown), position the cursor at the right item, then copy from
the given data pointer the element size bytes needed.

An open issue is whether the ”timestamp” field should be changed. Nothing in the
list structure has been changed, only the data stored in the container. Any iterators
will go on working as advertised even if this function is called to replace many items in
the list. In the other hand, if user programs were making assumptions about the data
(for instance a search function doesn’t always look again at past items to see if they
have been changed) this could bad consequences. As a rule, any change will provoke the
incrementing of the ”timestamp” counter.

Reverse

static int Reverse(List *1)

{

list_element *New,*current,*old;

if (1->count < 2)
return 1;

old = 1->First;

1->Last = 1->First;

New = NULL;

while (old) {
current = old;
old = old->Next;
current->Next = New;
New = current;

}

1->First = New;

1->Last->Next = NULL;

1->timestamp++;

return 1;

}

After the error checking, the list is reversed in place if the count of its element is bigger
than 1.7

"Looks easy isn’t it? It isn’t. It took me a while to arrive at the code above. Even worst is the
reversing of a double linked list

190

7.2. The code

Save

static int Save(List *L,FILE *stream,

{

}

size_t 1i;
list_element *rvp;

if (saveFn == NULL) {
saveFn = DefaultSaveFunction;
arg = &L->ElementSize;

if (fwrite(&ListGuid,sizeof(guid),1,stream) <= 0)
return EOF;

if (fwrite(L,1,sizeof(List),stream) <= 0)
return EQOF;

rvp = L->First;

for (i=0; i< L->count; i++) {
char *p = rvp->Data;

if (saveFn(p,arg,stream) <= 0)
return EOF;
rvp = rvp—>Next;
b

return 1;

The format of the saved list container is:

Seek

1. The GUID of the list container: 128 bytes
2. The Header object

3. The data for all the elements of the list

SaveFunction saveFn,void *arg)

static void *Seek(Iterator *it,size_t idx)

{

struct ListIterator *1i = (struct ListIterator *)it;
list_element *rvp;

if (1i->L->count == 0)

191

7. THE SAMPLE IMPLEMENTATION

return NULL;

rvp = 1li->L->First;
if (idx >= 1li->L->count-1) {
li->index = 1i->L->count-1;
1li->Current = 1li->L->Last;
}
else if (idx == 0)
li->index = 0;
1li->Current = 1i->L->First;

}
else {
li->index = idx;
while (idx > 0) {
rvp = rvp—>Next;
idx—-;
+
li->Current = rvp;
}

return li->Current;

}

This function positions the given iterator at the desired position. Several alternatives
are possible, for instance position the iterator at a given item. This can be obtained
now only by calling first Index0f, then Seek, what forces to go through the list twice.

SetCompareFunction

static CompareFunction SetCompareFunction(List *1,CompareFunction fn)

{

CompareFunction oldfn = 1->Compare;

if (1 == NULL) {
iError.RaiseError("iList.SetCompareFunction",
CONTAINER_ERROR_BADARG) ;
return NULL;
}
if (fn != NULL) {
if (1->Flags&CONTAINER_LIST_READONLY) {
1->RaiseError("iList.SetCompareFunction",
CONTAINER_LIST_READONLY) ;
}

else 1->Compare = fn;

192

7.2. The code

return oldfn;

b

This function returns the old value of the comparison function and sets it to the new
one, if the new one is not NULL . This allows to query the comparison function without
changing it, avoiding yet another trivial function like GetComparisonFunction. This is
just what in other languages like Objective C or others is called a property of the iList
object. Objective C makes all this automatic with its synthetise directive.

In C there isn’t any such hand holding and you have to write that code yourself.
There are several other functions in the same style like SetErrorFunction, Size (that
returns the count field) and SetFlags. They aren’t listed here but you can look at the
code by browsing through the list.c file distributed with this software.

Sizeof

static size_t Sizeof(List *1)

{
if (1 == NULL) {
return sizeof(List);
+
return sizeof (List) +
1->ElementSize * 1->count +
1->count *sizeof(list_element);
}

Returns the number of bytes used by the given list, including the data, and all overhead.
For lists, tghis is the size of the header object, and for each element the overhead of a
pointer to the next element and the size of each stored object. With a NULL list pointer
returns the size of the list header object, what allows you to allocate buffers containing
a header object and use the Init function.

Sort

static int Sort(List *1)
{
list_element *x*xtab;
size_t 1i;
list_element *rvp;
CompareInfo ci;

if (1 == NULL) {

iError.RaiseError("iList.Sort",CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;

193

7. THE SAMPLE IMPLEMENTATION

}

if (1->count < 2)
return 1;
if (1->Flags&CONTAINER_LIST_READONLY) {
1->RaiseError("iList.Sort" ,CONTAINER_ERROR_READONLY) ;
return CONTAINER_ERROR_READONLY;
+
tab = 1->Allocator->malloc(l->count * sizeof (list_element *));
if (tab == NULL) {
1->RaiseError("iList.Sort" ,CONTAINER_ERROR_NOMEMORY) ;
return CONTAINER_ERROR_NOMEMORY;
+
rvp = 1->First;
for (i=0; i<l->count;i++) {
tab[i] = rvp;
rvp = rvp—>Next;
+
ci.Container = 1;
ci.ExtraArgs NULL;
gsortEx(tab,l->count,sizeof (1ist_element *),lcompar,&ci);
for (i=0; i<l->count-1;i++) {
tab[i]->Next = tab[i+1];

+

tab[1l->count-1]->Next = NULL;
1->Last = tab[l->count-1];
1->First = tab[0];
1->Allocator->free(tab);
return 1;

This function basically builds an array and calls quicksort, nothing really fancy. Note
that it calls a modified version of the library function quicksort, since it needs to pass
a context to it for the comparison function. The default comparison function is listed
below:

static bool lcompar (const void *eleml, const void *elem2,

{

194

CompareInfo *ExtraArgs)

list_element *Eleml = *(list_element **)elemil;
list_element *Elem2 = *(list_element **)elem2;
List *1 = (List *)ExtraArgs->Container;
CompareFunction fn = 1->Compare;

return fn(Eleml->Data,Elem2->Data,ExtraArgs);

7.2.2

7.2. The code

The default comparison function pulls the list compare function and calls it with the
extra arguments needed to pass a context to it.

UseHeap

static int UseHeap(List *L, ContainerMemoryManager *m)
{
if (L == NULL) {
iError.RaiseError("iList.UseHeap",CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;
}
if (L->Heap || L->count) {
L->RaiseError("UseHeap",CONTAINER_ERROR_NOT_EMPTY) ;
return CONTAINER_ERROR_NOT_EMPTY;
}
if (m == NULL)
m = CurrentMemoryManager;
L->Heap = iHeap.Create(L->ElementSize+sizeof(list_element), m);
return 1;

b

This function installs a heap to be used by the list. This is very important for huge lists,
since performance goes quickly down if you call malloc for each element you add to the
list. Basically, the heap is just a way to allocate memory in blocks so that malloc calls
are reduced.

Queues

Queues are, to use the C++ terminology, adaptor containers, i.e. containers based
on other containers, in this case a list. We describe here an implementation with the
objective to show how those adaptors can be implemented, and how you can restrain
the interface of the underlying container with a small cost.

The data structure used is very simple:

typedef struct _Queue {
QueuelInterface *VTable;
List *Items;

} _Queue;

Just two fields: the interface and the underlying list. We do not document here some
functions of the queue interface that trivially call the corresponding List functions.

Back

static int Back(Queue *Q,void *result)

{

195

7. THE SAMPLE IMPLEMENTATION

size_t 1idx;

if (Q == NULL) {
iError.RaiseError("iQueue.Front" ,CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;

}

idx = iList.Size(Q->Items);

if (idx == 0)
return O;

return ilist.CopyElement (Q->Items,idx-1,result);

}

Returns the last element of the queue. We do not want to have any errors issued by the
underlying list, so we test for NULL . We use the size as an index, except of course when
the queue is empty.

CreateWithAllocator

static Queue *CreateWithAllocator(size_t ElementSize,
ContainerMemoryManager *allocator)

{
Queue *result = allocator->malloc(sizeof (Queue));
if (result == NULL)
return NULL;
result->Items = ilList.CreateWithAllocator(ElementSize,allocator);
if (result->Items == NULL) {
allocator->free(result);
return NULL;
}
result->VTable = &iQueue;
return result;
}

Using the given allocator, we get memory for the Queue object, then for the list using
the given allocator.

Finalize

static int Finalize(Queue *Q)

{
ContainerMemoryManager *allocator = iList.GetAllocator(Q->Items);
ilist.Finalize(Q->Items);
allocator—>free(Q);
return 1;
+

196

7.2.3

7.2. The code

We should free the queue header object with the same allocator we used for the list. We
obtain it first, before we free the list.

Front

static int Front(Queue *Q,void *result)
{
size_t idx;
if (Q == NULL) {
iError.RaiseError("iQueue.Front" ,CONTAINER_ERROR_BADARG) ;
return CONTAINER_ERROR_BADARG;
}
idx = iList.Size(Q->Items);
if (idx == 0)
return O;
return ilist.CopyElement (Q->Items,0,result);

Same as Back. We make the error checking to avoid errors when accessing the list.

Sizeof

static size_t Sizeof (Queue *q)

{
if (q == NULL) return sizeof (Queue);
return sizeof (*q) + iList.Sizeof (q->Items);

If passed a NULL queue, we return the size of the Queue header object. Note that we
do not return the size of the underlying list even if it has been allocated and uses up
space. An alternative design would have required to take into account the list header as
it would have been part of the overhead of the Queue object. But in that case we could
never know the size of the Queue itself...

The dictionary

Dictionary is an instance of a hash table where the key is supposed to contain character
strings (names) that are associated with some data. Hash tables are normal tables that
are indexed by a hash function, i.e. a function that maps character strings into some
integer that is used to index the table. At each slot of the table we find a linked list of
elements that were classified by the hash function into the same slot. If we have a good
hash function, i.e. one that spreads evenly the elements across the table, we can have a
speed up for searching an element of the order of the table size, in the best case.

197

7. THE SAMPLE IMPLEMENTATION

Hashing

One of the important aspects of a dictionary implementation is to use a good hash
function, i.e. one that distributes evenly the keys. I have picked up for this work one of
the most used functions of this type. Here is the documentation I found for this function
in the Apache runtime:

This is the popular ‘times 33’ hash algorithm which is used by perl and
that also appears in Berkeley DB. This is one of the best known hash func-
tions for strings because it is both computed very fast and distributes very
well.

The originator may be Dan Bernstein but the code in Berkeley DB cites
Chris Torek as the source. The best citation I have found is ”Chris Torek,
Hash function for text in C, Usenet message <27038@mimsy.umd.edu> in
comp.lang.c , October, 1990.” in Rich Salz’s USENIX 1992 paper about INN
which can be found at http://citeseer.nj.nec.com/salz92internetnews.html.

The magic of number 33, i.e. why it works better than many other
constants, prime or not, has never been adequately explained by anyone. So
I try an explanation: if one experimentally tests all multipliers between 1
and 256 (as I did while writing a low-level data structure library some time
ago) one detects that even numbers are not useable at all. The remaining
128 odd numbers (except for the number 1) work more or less all equally
well. They all distribute in an acceptable way and this way fill a hash table
with an average percent of approx. 86%.

If one compares the chi? values of the variants (see Bob Jenkins “Hashing
FAQ” at http://burtleburtle.net/bob/hash/hashfaq.html for a description
of chi?), the number 33 not even has the best value.

But the number 33 and a few other equally good numbers like 17, 31, 63,
127 and 129 have nevertheless a great advantage to the remaining numbers in
the large set of possible multipliers: their multiply operation can be replaced
by a faster operation based on just one shift plus either a single addition or
subtraction operation. And because a hash function has to both distribute
good and has to be very fast to compute, those few numbers should be
preferred.

— Ralf S. Engelschall <rse@engelschall.com>

Julienne Walker has another twist to this story. She says:®

Bernstein hash

8In the very interesting web page
http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx
In that page she also proposes to replace the addition operation with an XOR operations. She says
that that improves the algorithm.

198

7.2. The code

Dan Bernstein created this algorithm and posted it in a newsgroup. It
is known by many as the Chris Torek hash because Chris went a long way
toward popularizing it. Since then it has been used successfully by many,
but despite that the algorithm itself is not very sound when it comes to
avalanche and permutation of the internal state. It has proven very good
for small character keys, where it can outperform algorithms that result in
a more random distribution.

Bernstein’s hash should be used with caution. It performs very well in
practice, for no apparently known reasons (much like how the constant 33
does better than more logical constants for no apparent reason), but in theory
it is not up to snuff. Always test this function with sample data for every
application to ensure that it does not encounter a degenerate case and cause
excessive collisions.

hash
static unsigned int hash(const unsigned char xkey)
{
unsigned int Hash = O;
const unsigned char *p;
for (p = key; *p; p++) {
Hash = Hash * 33 + scatter[*p];
}
return Hash;
}

Note that I have slightly modified the algorithm by using a scatter table of 256 positions
filled with random numbers. The objective is to avoid that letters that appear frequently
in the text would tend to cluster the keys in the same position.

This default function may not be the best for the data in the user’s application.
The library has reserved a field in the dictionary header object for a pointer to a hash
function that can be changed by the user.

Creation

Another important aspect of the dictionary implementation is the decision of how many
slots the table should have. I have followed the recommendations of Dave Hanson in his
Book ”C interfaces and Implementations”®, and I use a small table of primes to decide
what size the table should have:

Init

9C Interfaces and Implementations, David R. Hanson, Addison Wesley. ISBN 0-201-49841-3 3rd
printing June 2001 page 149

199

7. THE SAMPLE IMPLEMENTATION

static Dictionary *Init(Dictionary #*Dict,
size_t elementsize,size_t hint)
{
size_t i,allocSiz;
static unsigned primes[] = { 509, 509, 1021, 2053, 4093, 8191,
16381, 32771, 65521, 131071, 0 7};
for (i = 1; primes[i] < hint && primes[i] > 0; i++)
allocSiz = sizeof (Dictionary);
memset (Dict,0,allocSiz);
allocSiz = primes[i-1]*sizeof (Dict->buckets[0]);
Dict->buckets = CurrentMemoryManager->malloc(allocSiz);
if (Dict->buckets == NULL) {
return NULL;
}
memset (Dict->buckets,0,allocSiz) ;
Dict->size = primes[i-1];
Dict->hash hash;
Dict->VTable = &iDictionary;
Dict->ElementSize = elementsize;
Dict->Allocator = CurrentMemoryManager;
Dict->RaiseError = iError.RaiseError;
return Dict;

}

The primes in the table are the nearest primes to the regular powers of two. Table
sizes can range from 509 to more than 130000, what gives a really wide range of table
sizes. Obviously, bigger tables could be necessary, and other specialized implementations
could use the hint parameter to extend this algorithm or to use a completely different
algorithm altogether.

Adding elements

This operation consists of:
e hash the key to find a slot
e g¢o through the list at that slot to see if the key is already there
e if key is already there replace

e if key is absent add it in a new list item

Add

200

7.2. The code

static int Add(Dictionary *Dict,const unsigned char *Key,void *Value)
{

size_t i;

struct Datalist *p;

unsigned char *tmp;

if (Dict == NULL)
return NullPtrError("Add");
if (Dict->Flags & CONTAINER_READONLY)
return ReadOnlyError (Dict,"Add");
if (Key == NULL || Value == NULL)
return BadArgError(Dict,"Add");
i = (xDict->hash) (Key) % Dict->size;
for (p = Dict->buckets[i]; p; p = p—>Next) {
if (strcmp(Key, p->Key) == 0)
break;
}
Dict->timestamp++;
if (p == NULL) {
p = Dict->Allocator->malloc(sizeof (*p)+Dict->ElementSize) ;
tmp = Dict->Allocator->malloc(1l+strlen((char *)Key));
if (p == NULL || tmp == NULL) {
if (p) Dict->Allocator->free(p);
if (tmp) Dict->Allocator->free(tmp);
return NoMemoryError(Dict,"Add");
}
p->Value = (void *) (p+1);
strcpy (tmp,Key) ;
p—>Key = tmp;
p—>Next = Dict->buckets[i];
Dict->buckets[i] = p;
Dict->count++;
}
memcpy ((void *)p->Value,Value,Dict->ElementSize);
return O;

}

Following the logical steps outlined above, we:

1. Call the hash function and use its result modulo the size of the slot table to fetch
the list at the indicated slot.

2. See if the key was absent. If that is the case, we need to add a new key. We copy
the key and allocate memory for a new list element that is initialized afterwards
with the copied value of the key and inserted into the list.

201

7. THE SAMPLE IMPLEMENTATION

3. Copy in the value. If it was a new key, its value is initialized, if the key was already
present we overwrite the old contents.

This function uses strecmp for comparing keys. This has the advantage of simplicity and
speed, but in many other contexts a key comparison function would be necessary, to
allow for keys in Unicode for instance, or for binary keys, for instance a GUID or similar
binary data.

An important design decision was to replace the data associated with a key if the key
is already there. This is a decision that has consequences for all associative containers,
since it must be coherent in all of them. Since the ”Insert” function allows for non-
destructive insertions, Add was allowed to replace contents since this is a very common
operation for instance in some symbol tables, where ”Insert if absent or replace if present”
is used to ensure that a symbol is associated with a certain value. 1°. At the same time
we need a Replace function since we want to get an error if the element we want to
replace was not found. A small table makes this clearer

Add Insert or replace an item for a key
Insert Insert, error if the key was present
Replace | Replace, error if key was absent

Implementing iterators

Iterators in sequential containers are conceptually easy: just start at the first and stop
at the last. In associative containers however things are more complicated since there
is no obvious way to order them. The solution retained in the sample implementation
involves going through all elements starting at the first element of the slots table, and for
each slot go through the linked list of items if any. This guarantees to visit all elements
in a fixed order. As an example of this here is the Apply function that should go through
all elements calling the given function for each one of them.

Apply

static int Apply(Dictionary #*Dict,
int (*apply) (const unsigned char *Key,
const void *Value,
void *ExtraArgs),
void *ExtraArgs)

size_t 1i;
unsigned stamp;

struct DatalList *p;

if (Dict == NULL) {

0Note that the C++ map: :insert does not replace an element

202

7.2.4

7.2. The code

return NullPtrError("Apply");
}
if (apply == NULL)
return BadArgError(Dict,"Apply");
stamp = Dict->timestamp;
for (i = 0; i < Dict->size; i++) {
for (p = Dict->buckets[i]l; p; p = p—>Next) {
apply (p—>Key,p->Value, ExtraArgs);
if (Dict->timestamp != stamp)
return O;

}

return 1;

As we outlined above, we start at slot zero, going upwards. If we find a non-empty
slot, we go through the linked list of items.

Iterators are implemented using the same algorithm, and need conceptually two
indexes to remember their position: a first index for the slots table, and another for the
position in the list of items at that slot.

The implementation of the dictionary iterator is as follows:

struct DictionaryIterator {
Iterator it;
Dictionary #*Dict;
size_t index;
struct Datalist *dl;
size_t timestamp;
unsigned long Flags;

I

The index field remembers the position in the slot table, and the d1 field is just a small
structure that contains a link to the next item in the linked list and a pointer to the key.
Storing the list element itself spare us the work of going through all the list to position
ourselves at each advance of the cursor in the list.

The bloom filter

This container is a completely different beast as all other ones we have in the library. It
is a probabilistic data structure. It was conceived by Mr Burton Howard Bloom in 1970
according to D. E Knuth in his Art of Computer Programming.

Bloom filters are designed to cheaply test if a given element is in a large set. It is
possible that the filter says that an element is there when in fact, it is not. But if the
filter says it is not there you can be ceratin that the element is not in the set.

203

7. THE SAMPLE IMPLEMENTATION

You can add elements to the set but not remove them. The more elements you add
to the filter, the larger the posibility of getting false positives, i.e. getting an answer of
"yes, the element is there” when in fact it is not.

Debugging malloc

The library provides a sample of how a malloc used for debugging allocation problems
could look like. It is designed to be enhanced and even if it has several important
features like detection of double free and buffer overflows, it is not a competitor for the
professional versions you can find in the market like valgrind or similar.

Malloc

static void *Malloc(size_t size)
{

register char *r;

register size_t *ip = NULL;

size = ALIGN_DEFAULT(size);
size += 3 * sizeof(size_t);
r = malloc(size);
if (r == NULL)
return NULL;
AllocatedMemory += size;
ip = (size_t *) r;
*ip++ = SIGNATURE;
*ip++ = size;
memset (ip, O, size - 3*sizeof(size_t));
ip = (size_t *) (&r[size - sizeof(size_t)]);
*ip = MAGIC;
return (r + 2 * sizeof(size_t));

}
The algorithm is as follows:

e The given size will be aligned to a multiple of size t. It is assumed that this
size is the size of a register, and will be good for any type of allocation. In some
machines this may be completely wrong, for instance for some quantities the Intel
processors need an alignment of 16 bytes, and there is no implementation of size_t
with that size.

e We reserve three words more than the requested size to store:

1. The "magic number”. This is just an integer that will enable us to ensure
that we are dealing with a valid block. Blocks that have this number two
words below the address passed to our Free function will be assumed to be

204

7.2. The code

real blocks. There is of course a chance that the memory could contain that
number for other reasons, but choosing a value that can’t be a pointer and
that is high above 100 millions give us a fighting chance that the probablity
of hitting a bad positive is fairly low.

2. The length of the block. This will allow us to verify that nothing was written
beyond the required length of the block.

3. A guard at the end of the block. We will ensure that we can read this quantity
when freeing the block.

e We obtain memory using malloc. If not available we just return NULL .

e We keep a counter of all memory allocated so far. This counter should be zero at
program exit. It helps to detect the leaks between two operations: it suffices to
note the value of the counter before some part of the software and then see if the
counter returns to the same value after the module has finished.

e We write the two different integers at the start and at the end of the block, together
with its size.

o We set to zero all memory even if the program didn’t ask us. This ensures that any
error that accesses uninitialized memory will always have the same consequences.

The other functions that complete this memory manager (free, realloc calloc) are not
shown here (they are available in the source code of the library). They just undo what
Malloc has built, calling the error functions if they detect a problem.

This simple system has several drawbacks.

o [f a buffer "underflow” happens, i.e. something is written to memory before the
start of the block, our field "length” could be wrong. Depending on the resulting
contents of the length field after the overwrite we could have a bogus length and
access some invalid memory.

e Memory overwrites after the magic number that guards the end of the block are
not detected. This is obviously impossible to detect unless we would just inspect
each memory write, but a few words more after the end of the block could give us
some extra security.

205

3

Building generic components

If you take the source code of a container like “arraylist”, for instance, you will notice
that all those “void *”are actually a single type, i.e. the type of the objects being stored
in the container. All generic containers use “void *” as the type under which the objects
are stored so that the same code works with many different types.

Obviously another way is possible. You could actually replace the object type within
that code and build a family of functions and types that can be specialized by its type
parameter. For instance

struct tag$(TYPE)ArrayInterface;
typedef struct _$(TYPE)Array {
struct tag$(TYPE)ArrayInterface *VTable;
size_t count;
unsigned int Flags;
$(TYPE) *contents;
size_t capacity;
size_t ElementSize;
unsigned timestamp;
CompareFunction CompareFn;
ErrorFunction RaiseError;
} $(TYPE) _Array ;

Now, if we just substitute $(TYPE) with ”double” in the code above, we obtain:

struct tagdoubleArraylInterface;
typedef struct _doubleArray {
struct tagdoubleArrayInterface *VTable;
size_t count;
unsigned int Flags;
double *contents;
size_t capacity;
size_t ElementSize;
unsigned timestamp;
CompareFunction CompareFn;
ErrorFunction RaiseError;
} double_Array ;

207

8. BUILDING GENERIC COMPONENTS

We use the name of the parameter to build a family of names, and we use the name
of the type parameter to declare an array of elements of that specific type as the contents
of the array. This double usage allows us to build different name spaces for each different
array type, so that we can declare arrays of different types without problems.

Using the same pattern, we can build a family of functions for this container that is
specialized to a concrete type of element. For instance we can write:

static int EraseAt($(TYPE) _Array *AL,size_t idx)
{
$ (TYPE) *p;
if (idx >= AL->count)
return CONTAINER_ERROR_INDEX;
if (AL->Flags & AL_READONLY)
return CONTAINER_ERROR_READONLY;
if (AL->count == 0)
return -2;
p = AL->contents+idx;
if (idx < (AL->count-1)) {
memmove (p,p+1, (AL->count-idx)*sizeof ($ (TYPE)));
}
AL->count--;
AL->timestamp++;
return AL->count;

when transformed, the function above becomes:

static int EraseAt(double_Array *AL,size_t idx)
{
double *p;
if (idx >= AL->count)
return CONTAINER_ERROR_INDEX,;
if (AL->Flags & AL_READONLY)
return CONTAINER_ERROR_READONLY;
if (AL->count == 0)
return -2;
p = AL->contents+idx;
if (idx < (AL->count-1)) {
memmove (p,p+1, (AL->count-idx)*sizeof (double)) ;
}
AL->count--;
AL->timestamp++;
return AL->count;

208

Now we can build a simple program in C that will do the substitution work for us.
To make things easier, that program should build two files:

e The header file, that will contain the type definitions for our array.
e The C source file, containing all the parametrized function definitions.

We separate the commands to change the name of the file from the rest of the text by
introducing in the first positions of a line a sequence of three or more @ signs. Normally
we will have two of those “commands”: one for the header file, another for the c file.

Besides that, our program is just a plain text substitution. No parsing, nor anything
else is required. If we write "$(TYPE)" within a comment or a character string, it will
be changed too.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define MAXLINE_LEN 2048
#define MAX_FNAME 1024
#define EXPANSION_LENGTH 256

int main(int argc,char *argv[])
{
FILE *input,*output=NULL;
char buf [MAXLINE_LEN],
tmpLine [MAXLINE_LEN+EXPANSION_LENGTH] ;
char tmpBuf [MAX_FNAME];
char outputFile[MAX_FNAME];
char *TypeDefinition;
unsigned lineno = 1;

if (argec < 3) {
fprintf (stderr,
"Usage: %s <template file to expand> <type name>\n",
argv[0]);
return EXIT_FAILURE;
}
input = fopen(argv([1],"r");
if (input == NULL) {
fprintf (stderr,"Unable to open file ’%s’\n",argv[1]);
return EXIT_FAILURE;
}
TypeDefinition = argv[2];
while (fgets(buf,sizeof (buf)-1,input)) {

209

8. BUILDING GENERIC COMPONENTS

if (buf[0]=="@" && buf[1] == ’@’ && buf[2] == ’@’) {

int i=0,j=0;

while (buf[i] == ’@’)
i++;

while (buf[i] '= 0 &&
buf[i] '= ’\n’ &&

i < MAX_FNAME-1) {
tmpBuf [j++] = buf[i];
i++;
}

tmpBuf [j] = 0;
if (strrepl(tmpBuf,"$(TYPE)",TypeDefinition,NULL)) {

fprintf (stderr,"File name ’%s’ too long\n",
tmpBuf) ;

return EXIT_FAILURE;

+
strrepl (tmpBuf,"$(TYPE)",TypeDefinition,outputFile);

if (output != NULL)

fclose(output) ;
output = fopen(outputFile,"w");

if (output == NULL) {

fprintf (stderr,
"Impossible to open ’%s’\n",outputFile);

return(EXIT_FAILURE);

3

else if (lineno == 1) {

fprintf (stderr,
"Error: First line should contain the file name\n");

exit (EXIT_FAILURE) ;
+

else {
/* Normal lines here */
if (strrepl(buf,"$(TYPE)",TypeDefinition,NULL)

>= sizeof (tmpLine)) {

fprintf (stderr,
"Line buffer overflow line %d\n",lineno);

break;

}
strrepl(buf,"$(TYPE)",TypeDefinition, tmpLine) ;

fwrite(tmpLine,1,strlen(tmpLine),output);
}

lineno++;

210

fclose(input);

fclose(output);

return EXIT_SUCCESS;
+

The heart of this program is the “strrepl” function that replaces a given character string
in a piece of text. If you call it with a NULL output parameter, it will return the number
of characters that the replacement would need if any. For completeness, here is the code
for strrepl:

int strrepl(const char *InputString, const char *StringToFind,
const char *StringToReplace, char *output)
{
char *xoffset = NULL, *CurrentPointer = NULL,;
int insertlen;
int findlen = strlen(StringToFind);
int result = 0;

if (StringToReplace)
insertlen = strlen(StringToReplace);
else
insertlen = O;
if (output) {
if (output != InputString)
memmove (output, InputString,strlen(InputString)+1);
InputString = output;
}
else
result = strlen(InputString)+1;

while (*InputString) {
offset = strstr (loffset ? InputString : CurrentPointer,
StringToFind) ;
if (offset == NULL)
break;
CurrentPointer = (offset + (output ? insertlen : findlen));
if (output) {
strcpy (offset, (offset + findlen));
memmove (offset + insertlen,
offset, strlen (offset) + 1);
if (insertlen)
memcpy (offset, StringToReplace, insertlen);
result++;

211

8. BUILDING GENERIC COMPONENTS

else {
result -= findlen;
result += insertlen;
}
}
return result;
+
And now we are done. The usage of this program is very simple:
expand <template file> <type name>
For instance to substitute by “double” in the template file “arraylist.tpl” we would
use:
expand arraylist.tpl double
We would obtain doublearray.h and doublearray.c
BUG: Obviously, this supposes that the type name does NOT contain any spaces
or other characters like ™*” or “[|”. If you want to use types with those characters you
should substitute them with a ”_” for instance, and make a typedef:

typedef long double long double;
And use that type ("long_double”) as the substitution type.

212

Index

Add, 48, 74, 91, 110, 122, 138, 145
code for hash, 198
code for list, 163
AddRange, 49, 74, 102
code for list, 164
AddToFreeList, 37
Alloc, 39
And, 92
AndAssign, 93
Append, 50, 75
code for list, 164
Apply, 51, 75, 110, 123, 131
code for hash, 200
code for list, 165

Back, 130, 132

code for list, 193
BitBlockCount, 94
BitString, 89
Bloomfilter, 137
Buffers, 140

CalculateSpace, 138
Calloc, 39
CastToArray, 103
Clear, 40, 52, 76, 111, 124, 132, 139, 141,
145
code for list, 166
Contains, 52, 76, 78, 112, 132
code for list, 168
Copy, 52, 77, 112, 124, 132
code for list, 167
CopyBits, 95
CopyElement, 53
code for list, 168

213

CopyTo, 78
Create, 37, 39, 53, 77, 112, 124, 132, 138,
141, 146
code for list, 169
CreateFromFile, 103
CreateWithAllocator, 54, 77, 112, 141,
145
code for list, 169, 194

DefaultListCompareFunction
code for list, 170
DefaultListLoad Function
code for list, 170
DefaultSaveFunction
code for list, 170
deletelterator, 54, 78, 112, 124
code for list, 170
Deque, 130
DestroyFreeList, 38
Dictionary, 108
structure, 161
Dlist, 68
structure, 159

EmptyErrorFunction, 41
Equal, 55, 78, 113, 133
code for list, 171
Erase, 55, 79, 113, 124, 133
code for list, 172
EraseAt, 55, 79
EraseRange, 56
code for list, 173
error-codes, 16

Finalize, 38, 40, 57, 80, 113, 134, 139,
141, 146

INDEX

code for list, 173, 194
Find, 139
FindFirstText, 103
FindNextText, 103
FindTextPositions, 104
Front, 129, 133

code for list, 194

Generic Container

structure, 157
GetAllocator, 57
GetBits, 95
GetCapacity, 80
GetCurrent, 42, 43

code for list, 174
GetData, 141
GetElement, 57, 80, 114, 125
GetElementSize, 57, 80, 114
GetFirst, 42

code for list, 174
GetFlags, 125, 134

code for list, 175
GetFlags / SetFlags, 58, 81
GetLast, 44
GetList, 130
GetNext, 43

code for list, 175
GetPosition, 142
GetPrevious, 43

code for list, 176
GetRange, 58, 81, 95

code for list, 177

hash
code for hash, 197
HashTable, 121

iAssociativeContainer, 150
iBitString, 90

iDeque, 131

iDictionary, 109

iDlist, 69

iError, 40
iGenericContainer, 148
iHashTable, 121

214

iHeap, 36
iList, 45
IndexIn, 82
IndexOf, 59, 82
code for list, 178
Init, 59, 104, 115
code for hash, 197
code for list, 180
InitHeap, 37
InitWithAllocator, 59, 104, 115
code for list, 179
Insert, 115
InsertAt, 60, 82
code for list, 180
InsertIn, 60, 83, 104
code for list, 181
iPool, 39
iSequentiaContainer, 149
iStringCollection, 101
Iterator
structure, 162
iterator
Dictionary, 201
iTreeMap, 119
iVector, 73

LeftShift, 95

List, 45

ListIterator, 162

lists
code, 163
double linked, 69
single linked, 45
structure, 158

Load, 62, 84, 115, 125, 134
code for list, 182

Malloc
code for debugMalloc, 201
mapcar, 153
mapcon, 155
Merge, 125
Mismatch, 85, 106

newlterator, 62, 84, 116, 126

Index

code for list, 184
newObject, 37
Not, 96
NotAssign, 96

ObjectToBitString, 96
Or, 96

OrAssign, 97

Overlay, 127

PeekFront, 146
PopBack, 70, 85, 107, 134
PopFront, 62, 135, 146
code for list, 185
PopulationCount, 97
Print, 97
PushBack, 135
PushFront, 63, 135
code for list, 185

Queue, 129

RaiseError, 40
Read, 142
RemoveAt, 98
code for list, 186
Replace, 127
ReplaceAt, 63, 86
code for list, 187
Resize, 127
Reverse, 64, 86, 97
code for list, 188

Save, 65, 86, 116, 127, 136

code for list, 188
Seek, 64

code for list, 189
Set, 99
SetAllocator, 65
SetCapacity, 87
SetCompareFunction, 65, 87

code for list, 190
SetErrorFunction, 41, 66, 87, 117, 128
SetPosition, 142
Size, 66, 88, 116, 117, 128, 142, 147

Sizeof, 38, 66, 83, 117, 128, 147
code for list, 191, 195

Sort, 66, 88
code for list, 191

Splice, 71

StrError, 41

StringCollection, 101
structure, 161

StringToBitString, 99

TreeMap, 119

UseHeap, 67
code for list, 192

Vector, 72
structure, 160

Write, 143
WriteToFile, 107

Xor, 99
XorAssign, 100

215

