
Beuth Hochschule SS16, S. 1

Buoys for Variables in Java

Table of Contents

1. How to represent variables as buoys..2
1.1. Types, variables and values in Java..2
1.2. Assignment statements..3
1.3. Different equals-methods..4
1.4. The one and only equality operation...5
1.5. Special rules for the type String ...5

2. How to represent arrays as buoys...6
2.1. Primitive or reference elements...6
2.2. Constructing an array in 3 steps or in 1 step...8
2.3. Nested arrays ..8
2.4. Nested arrays and new-commands..10
2.5. Sometimes nesting is for the birds..10
2.6. Multidimensional arrays..11

3. Solutions for the Problems..12

by Ulrich Grude
Beuth University of Applied Sciences

Abstract: Buoys are a graphical representation of variables. They were invented with the programming
language Algol68, but can be used to represent the variables of any programming language. With this
notation some otherwise hard problems will become easy to teach and to understand. For Java this in-
cludes the following: Of how many parts does a variable consist? What is the difference between a vari-
able of a primitive type and one of a reference type? Since the value of an int-variable is an int-num-
ber, why is it that the value of a String-variable is not a String-object? What is the difference be-
tween the operation == and the method equals? What is the difference between an empty array and
a null reference? What is the difference between a nested array and a multidimensional array? etc.

Buoys lend themselves to illustrate notions like variable, value, reference, equality, identity etc. and to
test a deeper understanding of them with problems of the form:
"Draw the buoy(s) of the following variable(s) ...".

The term exer in this paper is meant to encompass everything which is used to execute a program (e.g.
compilers, interpreters, operating systems, various kinds of hardware etc.). The exer also may be a hu-
man being (e.g. the reader) who executes a program with a pencil and paper.

S. 2, SS16 1. How to represent variables as buoys Beuth Hochschule

1. How to represent variables as buoys

The concept of a variable containing a value, which may be replaced by another value any number of
times is arguably the most important and fundamental concept of most programming languages. Many
phenomena pertaining to the realm of programming can only be comprehended with a precise mental im-
age of how such a modifiable variable looks like. So-called buoys provide a graphical representation of
variables, which supports and facilitates such a precise image. Variables of all mainstream programming
languages can be represented by buoys. Buoys have been invented together with the programming lan-
guage Algol 68 (towards the end of the nineteen-sixties) and have been slightly improved by students of
the Beuth University of Applied Sciences. This paper is specifically about the programming language
Java and its variables (and at the same time an introduction to buoys in general).

1.1. Types, variables and values in Java

In Java it is useful to distinguish

Primitive types (e.g. int, double, boolean, ...) and
Reference types (e.g. String, List<String>, String[], String[][][], ...).

Primitive variables (i.e. variables of a primitive type) and
Reference variables (i.e. variables of a reference type),

Primitive values (i.e. values which may be assigned to a primitive variable) and
Reference values (i.e. values which may be assigned to a reference variable).

Example-01: One primitive variable and two reference variables represented as buoys:
1 int anna = 17;
2 StringBuilder bert = new StringBuilder("Hello!");
3 StringBuilder carl = null;

As buoys these three variables may look as follows:

78

22

bert

"Hello!"

Name:

Reference:

Value:

Target-value:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The world of the programmer
(syntax)

The world of the exer
(semantics)

63

anna

17

69

null

carl

Every variable consists of at least two parts: A reference and a value. Every variable may (or may not)
have a name. In addition, reference variables may (or may not) have a target-value. Thus primitive vari-
ables may consist of 2 or 3 parts and reference variables may consist of 2, 3 or 4 parts.

Only the name of a variable (if present) belongs to the world of the programmer. The other parts belong
to the world of the exer, because only he can generate and manipulate them, and the programmer will
never see them directly (at most he may see certain shadows of values or target-values, e.g. on a screen).

In a buoy 4 geometric shapes are used to represent the (at most)
4 parts of a variable. Names are placed into so-called canoes.
Values are enclosed in rectangles. References are enclosed in
hexagons. The value of a reference variable is a reference and
therefore is enclosed in a rectangle (as a value) and in a hexa-
gon (as a reference). The special reference-value null does
not refer to a target value. Every other reference-value does re-
fer to a target value. In Java, every target value is an object.

Canoe, for names

Hexagon, for references

Rectangle, for values

Rectangle plus hexagon, for
values which are references



Beuth Hochschule How to represent variables as buoys SS16, S. 3

The exer may choose references any way he likes, as long as he guarantees two things:

1. References of variables are unique (i.e. different variables have different references).
2. The special value null is never used as the reference of a variable
(it is used only as the value of reference variables).

In Java, there are no operations which operate on the references of variables. And there are only three
operations, which operate on reference values: == and != (the equality and the inequality operation,
respectively) and = (the assignment operation). The programmer can not apply any other operation to
reference values (e.g. he can not do a computation with them, convert them to an int-value or to a
String-object or output them to the screen etc.).

Note: Even a program written in Jasmin (the assembler language for the Java Virtual Machine) can only
compare reference values with == and != or assign them to a variable.

1.2. Assignment statements

An assignment statement of the form x = y; always copies the value of variable y into the value-box
of variable x. This has radically different consequences depending on whether x and y are primitive
variables or reference variables.

Example-02: Assignments between primitive variables vs. between reference variables
1 int p01 = 17;
2 int p02 = 25;
3 StringBuilder r01 = new StringBuilder("ABC");
4 StringBuilder r02 = new StringBuilder("DE");
5
6 p01 = p02; // Assignment 1 (between primitive variables)
7 r01 = r02; // Assignment 2 (between reference variables)

As buoys these 4 variables may look (before and after the assignments) as follows:

16

17

12

p02

25

43

46

r01

44

47

r02

"DE"

Name:

Reference:

Value:

Target-value:

p01

"ABC"

16

25

12

p02

25

43

47

r01

44

47

r02

"DE"

p01

Before
Assignment 1 and
Assignment 2:

After
Assignment 1 and
Assignment 2:

Name:

Reference:

Value:

Target-value:
"ABC"

Remember: The references <16>, <12>, etc. and the reference values [<46>], [<47>] have been
chosen by the exer following his particular taste.

After the assignment p01 = p02; the variables p01 and p02 have equal values (viz. 25 and 25).
These values can be modified independently from each other (e.g. with additional assignments).

After the assignment r01 = r02; the variables r01 and r02 also have equal values (viz. [<47>]
and [<47>]). With these values they refer to (one and) the same object (not to two equal objects!). If
you change this object, you change the target-value of r01 and of r02.



S. 4, SS16 1.2. Assignment statements Beuth Hochschule

Problem-01: What is being output to the screen?
1 r01.append("XY");        // Appends "XY" to the target-value of r01
2 System.out.println(r02); // Outputs the target-value of r02

1.3. Different equals-methods

Every Java class contains an object method (a non-static method) with profile
public boolean equals(Object ob)

What this equals-method does (exactly when it will return true and when false) is decided by the
programmer of the class in question, and therefore may vary widely from class to class.

Example-03: equals-methods of classes String and StringBuilder
1 String st01 = new String("ABC");
2 String st02 = new String("ABC");
3 StringBuilder sb01 = new StringBuilder("ABC");
4 StringBuilder sb02 = new StringBuilder("ABC");

new-rule: Each time it is called, the new-command returns a "new reference", which is different from
all references existing so far. The new reference refers to a newly generated object and may be assigned
to a reference variable (of the appropriate type) as its new value.

From this rule it follows, that the four variables st01, st02, sb01, sb02 are guaranteed to have four
different values (because new has been called four times).

As buoys the four variables may look as follows:

51

55

st01

52

56

st02

"ABC""ABC"

Name:

Reference:

Value:

Target-vlue:

53

57

sb01

54

58

sb02

"ABC""ABC"

Please note: The target-values of st01 and st02 are String-objects, whereas the target-values of
sb01 and sb02 are StringBuilder-objects. The considerable differences between String-objects
and StringBuilder-objects are not shown by the buoys (they have to be inferred from the context).

The programmer of class String has decided, that his equals-method compares target-values (i.e.
String-objects), not the values of String-variables. From this it follows that the expression

st01.equals(st02)

evaluates to true (since "ABC" equals "ABC").

The programmer of class StringBuilder has decided, that his equals-method compares values of
StringBuilder-variables, not target-values. From this it follows that the expression

sb01.equals(sb02)

evaluates to false (since [<57>] is not equal [<58>]).

End of Example-03.

To check, if two StringBuilder-variables refer to equal character sequences, you can convert their
target-values (of type StringBuilder) to String-objects and then compare the String-objects,
e.g. like that:

sb01.toString().equals(sb02.toString())

This expression evaluates to true (since "ABC" equals "ABC").



Beuth Hochschule How to represent variables as buoys SS16, S. 5

Recommended: Before you compare objects of a class C with equals, you should read the documenta-
tion of C::equals (i.e. of the object-method equals of class C).

1.4. The one and only equality operation

The equality operation ==, when applied to variables, always compares their values and never their
names, references or target-values.

Example-04: The operation ==

In this example, the variables defined in the previous example, are used.

The expression st01 == st02 evaluates to false (because [<55>] is not equal [<56>])
The expression sb01 == sb02 evaluates to false (because [<57>] is not equal [<58>])

To learn, what the one (and only) equality operation == does, is much easier than to learn what the nu-
merous equals-methods are actually doing.

Sometimes a second operation is also called "an equality operation": !=. Its precise name is inequality
operation. Whenever x == y throws an exception, x != y throws the same exception. In all other
cases, x != y returns the value !(x == y). Thus, != comes close to be the opposite of ==.

1.5. Special rules for the type String

For each reference type there is a literal null. String is the only reference type, which has more than
this null-literal: "ABC", "How are you?" and "" are examples of additional String-literals.

String-variables may therefore be initialized in two ways:

- with the new-command (like variables of other reference types)
- with a String-literal (and without new).

When a new-command is used, the new-rule applies ("each call of the new-command returns a new ref-
erence", see above).

StringLiteral-rule: All String-variables initialized with the same String-literal have equal values
(and with these values refer to the same String-object).

Example-05: String-variables initialized with a literal only or with new:
1 String st10 = "ABC";
2 String st11 = "ABC";
3 String st12 = new String("ABC");
4 String st13 = st12;

As buoys these variables may look as follows:

61

65

st10

62

65

st11

"ABC"

Name:

Reference:

Value:

Target-value:

63

110

st12

64

110

st13

"ABC"

The variables st10 and st11 have (following the StringLiteral-rule) equal values ([<65>] and
[<65>]), because they are initialized with the same String-literal "ABC".

The variable st12 has (following the new-rule) a different value ([<110>]) than st10.

The variable st13 is initialized with the value of st12 (i.e. [<110>]). With this value st12 and
st13 refer to the same "ABC"-object, but to a different "ABC"-object than st10 and st11.



S. 6, SS16 2. How to represent arrays as buoys Beuth Hochschule

2. How to represent arrays as buoys

The representation of variables by buoys can illustrate the structure of arrays and clarify (among other
things) the following differences:

- between arrays with primitive elements and arrays with reference elements
- between nested arrays (native in Java) and multidimensional arrays (not native in Java)
- between an empty array and a null reference

2.1. Primitive or reference elements

An array of int contains int-variables. Those variables are located completely inside the array. An ar-
ray of String contains String-variables, but the target-values of those variables (the String-ob-
jects) are located outside of the array (not inside). Thus:
1. An "array of objects" does not really contain objects, but only references referring to objects.
2. An object may belong to any number of arrays at the same time (whereas a primitive value like 17 or
true may belong to at most one array, other arrays may only contain copies of it).

Example-01: Two arrays represented by buoys:
5    int[] ap = {10, 20, 30};         // An array with primitive elements
6    String[] ar = {"AB", "C", "DEF");   // An array with reference elements

As buoys the variables ap and ar may look as follows:

41

52

24

30

20

20

16

10

length

12

3

42

54

43

56

length

65

3

"AB" "C" "DEF"

0 1 2 0 1 2

110

ap

220

ar

100 200

Elaborate and abbreviated buoys: Buoys of Java arrays come in two forms: elaborate (as shown here)
and abbreviated (if the gray parts are left out). Thus references of array elements are optional, as are all
three parts of the variable length. Everything else is mandatory. The elaborate form is more realistic,
the abbreviated form more convenient. We will use the convenient form most of the time.

The array element ap[0] is a primitive variable without a name (but we can refer to it with the expres-
sion ap[0]). Here this variable has the reference <16> and the value [10] and all its parts are located
within the array ap (which is represented by a largish black rectangle).

The array element ar[0] is a reference variable without a name (but we can refer to it with the expres-
sion ar[0]). Here this variable has the reference <41>, the value [<52>] and the target-value
["AB"]. Note, that the target-value is located outside the rectangle of the array ar.

Remember: All references like <16>, <20>, ... etc. and all reference values like [<52>], [<54>], ...
etc. have been chosen by the exer following his particular taste (do not question his taste! :-).

The array object ar (the target-value of the variable ar) contains 3 elements and additionally an int-
variable named length with value 3. In all arrays this length-variable is unmodifiable.

The buoy of ar should make it clear, that the array does not contain String-objects, but only refer-
ences that refer to such objects. Thus it is possible, that the same String-object (which may be very
large) belongs to several arrays at the same time, being represented in each array only by a (relatively
small) reference value.



Beuth Hochschule How to represent arrays as buoys SS16, S. 7

Example-02: Two arrays "containing" the same String-objects (buoys in abbreviated form):

0

1

2

52

54

56

"AB"

"C"

"DEF"
52

54

56 0

1

2

220

ar

200

330

ar2

300

The array ar "contains" 3 String-objects, sorted in ascending order ("AB", "C", "DEF").
The array ar2 "contains" the same 3 String-objects, sorted in descending order ("DEF", "C", "AB").

In this example the three String-objects are rather small. But if each of them had a size of 1MB, the
two arrays ar and ar2 together would not occupy 6 MB of memory, but only slightly more than 3 MB.

An array with elements of a reference type may contain null-elements. Such elements do not refer to
any target-value.

Example-03: An array with 2 null-elements and an empty-String-element
7 String[] ar3 = {"AB", null, "", "DEF", null);

As a buoy (in elaborate form) ar3 may look as follows:

44

52

46

58

47

56

length

66

5

"AB" "" "DEF"

0 1 2

260

ar3

250

45

null

48

null

3 4

A null-element (like e.g. ar3[1] or ar3[4]) is fundamentally different from an empty String-ob-
ject (like e.g. ar3[2]). A null-element does not refer to a target-value. But even an empty String-
object is a full-blown object, which contains more than 60 methods. Only the number of characters it
contains is the smallest possible (i.e. 0).

Analogy: To have an empty cup of coffee is different from having no cup at all.



S. 8, SS16 2.2. Constructing an array in 3 steps or in 1 step Beuth Hochschule

2.2. Constructing an array in 3 steps or in 1 step

The following sequence of commands will first construct an array as01 in 3 steps, and then a very simi-
lar array as02 in a single step. The 3-step-construction will be illustrated with 3 snapshots, i.e. buoys,
that show how as01 looks after each step.
1    String[] as01 = null;         // step 1
2    as01    = new String[2];      // step 2
3    as01[0] = "AB";               // step 3, part 1
4    as01[1] = "C";                // step 3, part 2
5
6    String[] as02 = {"AB", "C"};  // All in 1 step

The 3 snapshots (in abbreviated form) of as01 may look as follows:

null

as01

700

710

as01

700

null null 710

as01

700

720 730

"AB" "C"

after step 1 after step  2 after step 3

0 1 0 1

After step 1: There is an array variable as01 (which may refer to an array), but no array yet.

After step 2: Now the array variable as01 refers to an array, but the array contains only null-elements.

After step 3: Now the array elements refer to String-objects

Problem-02: Draw as02 as buoy. Which parts are equal to those of as01 and which parts are guaran-
teed to differ?

2.3. Nested arrays

Nesting-Rule-1: For every type T there is an array type T[] (pronounced: array of T) and
T is called the element type of the array type T[].

In Java every array type (and every array) has a nesting depth. This depth is equal to
the number of pairs of square brackets [] in the type name.

Example-01: Some array types, their pronunciation, nesting depth and element type

Array type pronounced nesting depth Element type

int[] array of int 1 int

int[][] array of arrays of int 2 int[]

int[][][] array of arrays of arrays of int 3 int[][]

String[] array of String 1 String

String[][] array of arrays of String 2 String[]

String[][][] array of arrays of arrays of String 3 String[][]

Def.: A nested array is an array with nesting depth 2 or greater. Arrays with a nesting depth of 1 are
sometimes called non-nested.

Example-02: Nested arrays, and a buoy for one of them:
1   int[][] a2a = {{11, 12, 13}, {21, 22, 23}, {31, 32, 33}};
2   int[][] a2b = {{11, 12, 13}, {21, 22}, {31}, {}};

The array a2a has 3 elements of type int[] (and indirectly contains 9 int-elements).



Beuth Hochschule How to represent arrays as buoys SS16, S. 9

The array a2b has 4 elements of type int[] (and indirectly contains 6 int-elements).

As a buoy (in abbreviated form) the array a2b may look as follows:

0

1

2

60

62

64

440

a2b

400

3 66

11 12 13
0 1 2

21 22
0 1

31
0

This example shows, that the elements of a nested array may be (arrays) of different lengths.

Remember: An array of objects does not really contain objects, but only references, which refer to ob-
jects. A nested array is an array of array-objects. Therefore it does not contain array-objects as its ele-
ments, but references, which refer to array-objects.

Problem-03: Draw a buoy (in abbreviated or in elaborate form, as you like) which represents the array
variable a2a of Example-02.

Besides "plain vanilla elements" a nested array may contain elements of more exciting flavors too .

Example-03: A nested array with empty elements and null-elements:
3   int[][] a2c = {null, {21, 22}, null, {}, {51, 52, 53}, {}};

As a buoy (in abbreviated form), the array variable a2c may look as follows:

0

1

4

null

null

74

550

500

5 75

51 52 53
0 1 2

21 22
0 1

71

73

2

3

a2c

The array a2c contains six elements, of which two are empty arrays (a2c[3] and a2c[5]) and two
are null-elements (a2c[0] and a2c[2]).



S. 10, SS16 2.4. Nested arrays and new-commands Beuth Hochschule

2.4. Nested arrays and new-commands

The following declarations
1    string[][][][][] as5 = null;
2       int[][][][][] ai5 = null;

tell the exer to create 2 variables. As buoys these variables may look like
shown on the right. Although the declaration contains a generous amount of
square brackets, the buoys look like any other reference variable. But they have
a hidden special trait, which is not represented in the buoys, but is well known
to the exer.

The values of as5 and ai5 seem to be equal, since they both are represented by null. But in reality,
these null-values are of different types and thus incomparable (an expression like as5 == ai5
would be a syntax error). The null-value of as5 is of the type String[][][][][], whereas the
null-value of ai5 is of type int[][][][][].

The following new-command:

... new String[3][][][][] ...

generates an array of nesting depth 1, which as a buoy may
look like shown on the left, and returns a reference, which

refers to this array (here this is the reference <123>). This reference is of type String[][][][][]
and thus may be assigned to the variable as5:   as5 = new String[3][][][][];

The new-command ... new int[3][][][][] ... generates a very similar array and returns a
reference referring to it. That reference is of type int[][][][][] and therefor may be assigned to
ai5: ai5 = new int[3][][][][];

Problem-04: Of which type are the null-elements in the array referred to by the reference <123>?

The following new-command
... new int[3][2][] ...
generates an array with nesting depth 2 as
shown on the right, and returns a reference,
which refers to this array (here: <234>).
This reference is of type int[][][].
The null-elements in the element arrays
are all of type int[].

Problem-05: The following new-command will return a reference R
referring to to a newly generated array A:
... new int[2][5][3][][][] ...

1. Of what type is R?

2. What depth of nesting does A have?

3. At its bottom the array A will contain some null-values. Of which type are they?

2.5. Sometimes nesting is for the birds

For a mathematician, it's an easy exercise to regard all objects as arrays. Using an old trick he would call
an object, which really is not an array, "an array of nesting depth 0". And he would proudly point out,
that with this funny way of speaking the following simple rule would make sense:

Nesting-rule-2: An array has nesting depth n, if all its elements have nesting depth n-1.

Self-evident as this rule may sound: In some cases it fails to work.

null

as5

800

null

900

ai5

123 null null
0 1

null
2

234 381 382
0 1

383
2

null null
0 1

null null
0 1

null null
0 1



Beuth Hochschule How to represent arrays as buoys SS16, S. 11

Example-01: An array with a dubious depth of nesting
1 String vs  = "Hello!";              // depth of nesting: 0
2 String[] as  = {"A", "B"};            // depth of nesting: 1
3 int[][] ai  = {{11, 12}, {21, 22}};  // depth of nesting: 2
4
5 Object[] ao1 = {as, ai, vs};          // depth of nesting?

In this example, the array ao1 is the culprit. It contains as its elements arrays of different depths of nest-
ing. Therefore, its own depth is not defined by Nesting-rule-2.

Even worse: An array of type Object[] may contain any
array as element, even itself.

Example-02: An array which contains itself as an element
1 Object[] ao2 = new Object[3];
2 ao2[0] = ao2;

The Nesting-rule-2 does not define a nesting depth for the
array ao2.

2.6. Multidimensional arrays

Apparently, many people are against discrimination, even against discrimination between nested arrays
and multidimensional arrays. This is unfortunate, because the difference between them is interesting and
of practical relevance. Roughly speaking: Nested arrays are more powerful (they can solve more prob-
lems), but multidimensional arrays (if applicable) are more efficient (they need less memory and execu-
tion time).

There is no difference between non-nested arrays (with a nesting depth of 1) and 1-dimensional arrays.
But nested arrays (with a nesting depth of 2 or greater) and truly multidimensional arrays (with 2 or more
dimensions) are different creatures.

Arrays in Java are nested (or: arrays of arrays, not multidimensional)
(see p. 4 of https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf).
In Fortran and Pascal, there are only multidimensional arrays. In Ada,  C++ and C#, both nested and
multidimensional arrays are native features.

The important differences between the two kinds of arrays:

A nested array contains arrays, which may be of different lengths.

A multidimensional array does not contain arrays, but elements of a non-array-type (like int, float,
String, ... etc.). To access an element, one needs to supply several indices, one for each dimension,
e.g. mar[3, 5] would access the element in the 3rd line and 5th column of a 2-dimensional array
mar.

A multidimensional array has a fixed length for each of its dimensions. E.g. a 2-dimensional array may
consist of 10 lines of 15 rows each (all lines have to have the same length). A 5-dimensional array has to
"resemble" the shape of a 5-dimensional cuboid.

A nested array is usually implemented as an array of references (which refer to arrays).
A multidimensional array is usually implemented as a non-nested (or: 1-dimensional) array plus
some fancy index-fiddling.

People at IBM have extended Java by some commands for the generation and handling of multidimen-
sional arrays (see http://researcher.watson.ibm.com/researcher/files/us-bacon/Bacon98JaLA.pdf), but
these extensions require a special IBM-Java-compiler.

910

ao2

900

910 null
0 1

null
2



S. 12, SS16 3. Solutions for the Problems Beuth Hochschule

3. Solutions for the Problems

Solution for Problem-01: What is being output to the screen?
1 r01.append("XY");        // Appends "XY" to the target-value of r01
2 System.out.println(r02); // Outputs the target-value of r02

Output: DEXY

Solution for Problem-02: Draw as02 as buoy. Which parts are equal to those of as01 and which parts
are guaranteed to differ?

The reference <800> and value [<810>] of as02 are guaranteed
to be different from those of as01.

The values [<720>] and [<720>] of as02[0] and as02[1]
are guaranteed to equal the values of as01[0] and as01[1].

Solution for Problem-03: Draw a buoy (in abbreviated or in elaborate form, as you like) which repre-
sents the array variable a2a of Example-02.
1    int[][] a2a = {{11, 12, 13}, {21, 22, 23}, {31, 32, 33}};

The array variable a2a in abbreviated form:

0

1

2

70

72

74

540

a2a

500 11 12 13
0 1 2

21 22
0 1

31
0

32 33
1 2

23
2

Solution for Problem-04: Of which type are the null-elements in the array referred to by
the reference <123>?

They are of type int[][][][].

Solution for Problem-05: The following new-command will return a reference R
referring to to a newly generated array A:
... new int[2][5][3][][][] ...

1. Of what type is R? Of type int[][][][][]

2. What depth of nesting does A have? A has nesting depth 3

3. At its bottom the array A will contain some null-values.
    Of which type are they? They are of type int[][]

810

as02

800

720 730

"AB" "C"

0 1


