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Abstract 

This study examined Auditory (A) and Visual (V) speech 
(speech-related head and face movement) as a function of noise 
environment. Measures of AV speech were recorded for 3 
males and 1 female for 10 sentences spoken in quiet as well as 
four styles of background noise (Lombard speech). Auditory 
speech was analyzed in terms of overall intensity, duration, 
spectral tilt and prosodic parameters employing Fujisaki model 
based parameterizations of F0 contours. Visual speech was 
analyzed in terms of Principal Components (PC) of head and 
face movement. Compared to speech in quiet, Lombard speech 
was louder, of longer duration, had more energy at higher 
frequencies (particularly with babble speech) and had greater 
amplitude mean accent and phrase commands. Visual Lombard 
speech showed greater influence of the PCs associated with 
jaw and mouth movement, face expansion and contraction and 
head rotation (pitch). Lombard speech showed increased AV 
speech correlations between RMS speech intensity and the PCs 
that involved jaw and mouth movement. A similar increased 
correlation occurred for intensity and head rotation (pitch).  For 
Lombard speech, all talkers showed an increased correlation 
between F0 and head translation (raising and lowering). 
Increased F0 correlations for other head movements were more 
idiosyncratic. These findings suggest that the relationships 
underlying Audio-Visual speech perception differ depending 
on how that speech was produced 

1. Introduction 

The Lombard effect (or Lombard reflex/sign) refers to the 
tendency for a person to increase the loudness of his/her voice 
in the presence of noise [1]. Compared with speech in quiet, 
speech in noise is typically produced with increased volume, 
decreased speaking rate, and changes in articulation and pitch 
[2]. It has been suggested that such changes lead to improved 
speech communication in noisy environments. The Lombard 
effect occurs in children [3], macaques [4] and birds [5]. In 
most instances the Lombard effect occurs reflexively; it is not 
diminished by training or instruction [6; although see 7].  

Studies on the Lombard effect have concentrated on 
describing the changes that occur in the auditory signal. In this 
paper, we follow-up the approach of [8] and consider changes 
that also occur in the visual correlates of speech articulation. 
This study is important for describing speech in a variety of 
natural conditions and particularly for characterizing changes in 
the relationship of AV speech signals.  

2. Method 

Participants. Four people participated in the experiment (3 
males, 1 female). All were native speakers of English (one 
British, two Australian and one American); ages ranged from 
32 to 54 years. 
Materials. The materials were 10 sentences selected from the 
1965 revised list of phonetically balanced sentences (Harvard 
Sentences, [9]). 
Noise. Two types of background noise were employed, multi-
talker babble and white noise. A commercial babble track 
(Auditec, St. Louis, MO) was used; the white noise was 
generated at the same average RMS as the babble track. The 
noise was presented to participants either through ear plugs or 
through two loud speakers (Yamaha MS 101-II). The 
conditions will be referred to as babbleP; babbleLS for the 
babble noise ear plug and loud speaker conditions and whiteP 
and whiteLS for the white noise plug and loud speaker 
conditions. 
Movement capture. Two Northern Digital Optotrak machines 
were used to record the movement data.  
 

 

Figure 1. Position of the 24 facial markers and the four 
rigid body markers (on the extremities of the head-rig). 

The configuration of the markers on the face and head 
rig is shown in Figure 1. Sound was captured from both a head-
mounted (Share SM12A) and a floor microphone (Sennheiser 
MKH416P48U-3). Video was captured using a digital camera 
(Sony HDCAM HKDW-702). 
Procedure Each session began with the placement of the 
movement sensors (see Fig 1) during which time participants 
were asked to memorize the ten sentences to be spoken. Each 
participant was recorded individually in a session that lasted 
approximately 90 minutes. Participants were seated in an 
adjustable dentist chair in a quite room and were asked to say 



aloud ten sentences (one at a time) to a person who was directly 
facing them at a distance of approximately 2.5M. The 
participant then repeated the ten sentences. This basic 
procedure was repeated once for each speech condition. These 
conditions consisted of the participant speaking while hearing 
multi-talker babble through a set of ear plugs (at approximately 
80 dB SPL); hearing the same babble through two Loud 
Speakers; hearing white noise through ear plugs (at the same 
intensity); hearing white noise through the loud speakers 
(participants also whispered the sentences at a level judged loud 
enough for the conversational partner to hear, we will not 
consider this condition here). 
 

Data processing. Non-rigid facial and rigid head movement 
was extracted from the raw marker positions. The data were 
recorded at a sampling rate of 60Hz. Each frame was 
represented in terms of its displacement from the first frame and 
Principle Component (PC) analysis was used to reduce the 
dimensionality of the data. Discrete data was fitted as 
continuous functions using B-spline basis functions (so called 
functional data, see [10]). This process of converting discrete 
data to trajectories required that all instances were of the same 
time, this was achieved by a reversible time alignment 
procedure (with time differences recorded). The characteristic 
shape of the data was maintained over the time warping 
procedure by using manually placed landmarks that were then 
aligned in time (the beginning and end of each curve were also 
taken as landmarks).  

The acoustic analyses were carried out on the earplug 
conditions only. F0 contours were calculated at 10 ms intervals 
using the Praat [11] default pitch estimation. Contours were 
checked and corrected within the Praat PitchEditor. Fujisaki 
parameters were estimated automatically [12] and if necessary 
corrected using the interactive FujiParaEditor [13]. Time 
constants α and β were generally set to 2/s and 20/s, 
respectively. Fb was 95, 96, 76 and 144 Hz for the different 
subjects. Formant frequencies and energy were analyzed on the 
hand segmented vocalic portion of the signal using Praat for 
only one participant.  For the correlation analysis, the auditory 
and visual data were aligned by fitting a cubic smoothing spline 
to the auditory data (either RMS energy or interpolated F0 
curve) which was then resampled to precisely match the time of 
the visual data; correlation coefficients were calculated as the 
zeroth lag of the normalized covariance function. For spectral-
energy by movement correlations, RMS energy was band-
passed based on formant frequency values. This correlation was 
only performed for one participant. 

3. Results 

Auditory analysis: Analysis of the auditory data indicated a 
Lombard effect: Speech in noise was louder than that produced 
without, [F (1,78) = 365.41, p < 0.05]. The average size of this 
effect was 11 dB. The length of the renditions also increased for 
the in-noise conditions compared to the no-noise condition, 
[F(1,78) = 33.4), p < 0.05] with an average increased 

production time of 290 ms. Formant frequencies tended to rise 
in Lombard (babbleP and whiteP), with the largest increase in 
F3 (see Figure 2).  

 

 

Figure 2. Average formant frequencies (F1, F2 and F3) 
for the In-quiet, Babble earplug and White-noise 
earplug conditions (for one participant). 

The main effects of Formant and Speech Condition were 
significant [F(2,260) = 1453.9, p < 0.05; F(2,26) = 39.17, p < 
0.05, respectively]. There was also a significant interaction 
between these effects [F4, 260 = 6.9, p < 0.05]. Lombard 
speech was relatively more intense in the upper speech 
formants (see Figure 3).  

 

Figure 3. Average formant energy (dB) as a function of Speech 
Condition  (for one participant). 

This intensification was more marked for the babbleP Plug 
condition in F3 compared to the whiteP condition. All four 
speakers showed higher mean fundamental frequency values in 
the noise conditions compared to the In-Quiet condition. 
Compared to In-Quiet, all four speakers exhibited larger ranges 
of fundamental frequency in the babbleP condition and three of 
them had even larger range expansions in the whiteP condition 
(see Table 1). 
 



 

Table 1: Mean fundamental frequency (F0), standard 
deviation (sd), and range of F0 each speech condition 
for all four speakers. 

mean F0 (sd) range F0 
S 

Quiet babbleP whiteP Quiet babbleP whiteP 

1 
136.5 
(23.8) 

194.03 
(26.3) 

195.8 
(27.6) 

105.7 129.7 142.1 

2 
141.1 
(22.7) 

177.1 
(25.4) 

200.9 
(28.6) 

96.4 121.5 142.5 

3 
115.1 
(26.0) 

210.8 
(45.2) 

179.9 
(46.3) 

104.0 179.6 179.1 

4 
183.5 
(26.5) 

272.3 
(44.3) 

302.5 
(53.4) 

105.0 188.3 222.3 

 
Table 2 provides a summary of accent and phrase commands 
for the four talkers. Overall the mean accent command 
amplitudes (Aa) are significantly lower in the In-Quiet 
condition compared to the other conditions. This effect can be 
observed when comparing the accent command amplitudes in 
Figure 6. Displayed are utterances of the female speaker in the 
two communicative environments: Quiet condition at the top 
and babbleP at the bottom. Each example displays from top to 
bottom: speech waveform, F0 contour (extracted: +-signs, 
model-based: solid line), word labels, and amplitudes Ap and 
Aa of phrase and accent commands underlying the F0 contour. 
Mean phrase command amplitudes (Ap) are on average twice as 
high in the conditions babbleP and whiteP. The mean 
frequency of accent commands and phrase commands 
(rightmost columns - commands per second) were similar 
across the speech conditions. 

Table 2: Mean, standard deviation (sd) and total number (N) 
of accent commands Aa, as well as phrase commands Ap for 
the four speakers, total duration of speech material (Dur) as 
well as frequency of accent and phrase commands expressed 
as commands per second (cmds/s). 

Aa Ap Dur. Type 
mean/s.d.  mean/s.d. [s] 

Acc. 
cmds/s 

Phr. 
cmds/s 

In-
Quiet 

N 

.30/.16 
309 

.43/.20 
110 

159.1 1.94 0.69 

babbleP 
N 

.40/.19 
612 

.85/.31 
231 

318.9 1.92 0.72 

whiteP 
N 

.43/.20 
357 

.80/.31 
139 

195.9 1.82 0.71 

 

Visual analyses: In order to parameterize the contribution of the 
PCs, absolute values of each PC were summed to represent the 
amount that each PC contributed to head and face movement 
over time (see Fig 4). These data (“PC strength”) were used as 
the dependant measure in a series of ANOVAs to determine 

whether there were differences in the amount of movement 
across speech modes, sentences and persons.  

 

Figure 4.  The absolute value of each PCs contribution 
across time was summed to provide a PC strength 
measure. 

The analyses use the first 6 PCs since visualization of these 
showed that they largely represented specific head and face 
movement. That is, PC1 was jaw motion (and mouth opening); 
PC2 as mouth opening and eyebrow raising (without jaw 
motion), PC3 as head translation (towards the hearer), PC4 as 
lip protrusion, PC5 as mouth opening and eyebrow closure (cf 
PC2) and PC6 as rotation (pitch). Approximate 90% of the 
variance was captured by the first 6 PCs. In terms of these PCs, 
the effect of talking in noise (as measured from the In-Quiet 
condition) can be characterized as consisting of a marked 
increase in jaw (PC1) and mouth motion and eyebrow 
expansion (PC2), increases both in lip protrusion (PC4), mouth 
and eyebrow closure (PC5) and pitch head rotation (PC6). 
There was however no change in the translation of the head 
(PC3).  Figure 5 (top) shows the increase in size of first 6 PCs 
for speech in noise (relative to each of the associated PCs for 
the In-Quiet condition). 
 

 

Figure 5.  The change in size of PCs 1–6 (relative to the 
In-Quiet condition) as an average of the four different 
speech-in-noise conditions  

 
 



 

 

Figure 6: Two examples of the sentence "Two blue fish swam in the tank” spoken by the female speaker. Each example displays: 
Speech signal, F0, word labels, phrase commands, and accent commands. Top panel: normal, bottom panel: babbleP.  

 
The four speech-in-noise conditions were analyzed separately 
to determine if the type of noise affected the amount (main 
effect) and constitution (interaction effect) of head and face 
movement. The analyses indicated that there was a main effect 
of noise-type [F (3,585) = 3.82, p < 0.05] and that this 
interacted with the effect of the different PCs [F(15, 585) = 2.86, 
p < 0.05]. ANOVAs were conducted with noise-type and the 
mode of noise delivery (Plug vs. Loud Speaker) as factors to 
determine whether these properties altered the pattern of head 
and face movement. Analysis revealed that there was a 
significant effect of noise-type [F(1,195) = 4.41, p < 0.05, with 
the sum of PCs 1-6 being larger for babble noise than for white 
noise] and a significant effect of the mode of noise delivery 
(Plug vs. Loud Speaker) [F(1,195 = 4.2, p < 0.05, with the sum 
of PCs 1-6 being larger for the Plug than for Louder Speakers]. 
There was also an interaction between these effects and the 
pattern of PCs. For noise-type x PCs [F(5, 195) = 4.46, p < 0.05] 
and noise-delivery x PCs [F(5,195) = 2.25, p = 0.05].  
 

 

Auditory-Visual analysis: The following analyses examined the 
relationship between the RMS of the auditory signal for wide 
band (WB) and two frequency sub-bands (in the F1 and F2 
range) for PCs 1–6 for the different in speech conditions. These 
analyses were conducted using the data from a single 
participant (male, aged 45). Previous studies have shown that 
the correlation of auditory RMS and mouth movement change 
as a function of speech frequency band (e.g., [14]). To examine 
this, the auditory stimuli were band-pass filtered into two 
speech bands that should contain F1 (100-800 Hz) and F2 
energy respectively (800-2200 Hz). Figure 7 shows the average 
correlation coefficients for F1 and F2 RMS energy and PCs 1-6 
for In-Quiet speech and for an average of the speech in noise 
conditions.  



 

Figure 6.  Average correlation coefficients between F1 
band RMS (top) and F2 (bottom) and PCs1-6 for the 
different speech conditions 

The general pattern of correlations shown for WB, F1 and F2 
RMS band speech and the movement PCs were similar. 
However, the correlations for the first two PCs for the F2 data 
were considerably higher than those for the corresponding PCs 
in WB or F1 band signals. 

In addition to examining correlations between spectral 
energy and visual speech we also investigated how F0 
correlates with rigid head movements and the effect of 
Lombard speech. Three types of head movement were 
examined: translation in the Z and Y axes and rotation in the X 
axis (pitch). For this analysis only the In-Quiet and Babble-Plug 
conditions were contrasted. In general, the correlations were 
only weak to moderate and although some correlations 
increased for Lombard speech this was not a systematic effect. 
For example, although for two participants there was an 
increased correlation between F0 and head rotation in the X 
axis (pitch) for Lombard speech (r = 0.31 and 0.43, for the In-
Quiet and Babble Plug conditions respectively), the other two 
participants did not show this effect. Interestingly, all 
participants showed an increased correlation between head 
translation in the Z axis and F0 for Lombard speech (r = 0.31 
and 0.41, respectively). Only one participant showed an 
increased correlation between head translation in the Y axis and 
F0 for Lombard speech (r = 0.29 and 0.73, respectively). 

 

4. Discussion 

Lombard speech is louder, slower and more intense in the upper 
formants than speech in quiet. The analysis of accent 

commands has shown that all four speakers differ considerably 
between no-noise and speech-in-noise communicative 
environment. In terms of mean accent and phrase commands, 
the effect of talking in noise can be characterized as an increase 
in both amplitudes. Lombard visual speech has more mouth and 
jaw and rigid head movements than quiet speech.  Lombard 
speech induced by babble noise was more intense in the F3 
region than for the white noise inducer. Likewise, speech 
produced in babble tended to have more jaw and mouth 
movement than that produced in white noise. Lombard speech 
seems intended to aid communication in noise and the greater 
coupling between the AV signals for Lombard speech suggests 
that visual speech also plays a role. 
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