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ABSTRACT

Improving the naturalness of synthetic speech is an essential
task in developing a text-to-speech (TTS) system. Mainly, it
depends on the quality of the prosody model which is utilized
in the TTS system. For our TTS system called DreSS (Dresden
Speech Synthesizer), we compared three different methods for
generating the F0 contour to each other as well as to other
synthesizers. Natural speech samples were used as a reference.
Results show, that on a naturalness scale from 0 to 4, the
natural speech samples reach a maximum score of 3.6, with
values of 1.9 for the best synthesis, the LPC-based one. The
system with an intonation control basing on the Fujisaki model
leads the group of PSOLA systems, which are closely clustered
at a mean of 1.54.

1. INTRODUCTION
This paper describes recent improvements of the Dresden TTS
system (DreSS) and their evaluation. DreSS is a diphone-based
time-domain synthesizer with preprocessing module,
grapheme-phoneme converter, duration control, intonation
control, and acoustic module. It is available as a software
system but also as stand-alone system supported by a special
processor [1]. This solution is available with PCMCIA
standard.

Recent improvements refer to multilinguality and
naturalness. Multilinguality is obtained by a dedicated structure
which can handle databases from different languages.
Databases for German, English, Russian, Czech, and Chinese
have been developed.

Naturalness is a highly important feature of synthetic
speech. Apart from the segmental quality and the voice
characteristics, it depends mostly from the prosody. Because it
is hard to evaluate in an objective way, we started a perceptual
comparison of different methods for generating the F0 contour
of German sentences. For this purpose, DreSS was equipped
with three intonation modules (rule-based linear f0-model,
neural-network based approach, rule-based approach applying
the Fujisaki model). In this paper, we describe the intonation
modules as well as the results of the evaluation.

2. THE TTS SYSTEM DreSS
This chapter gives an overview of the text processing in the
Dresden Speech Synthesis System (DreSS) as shown in Figure
1:
• Plain ASCII-text or text enriched with conceptual
information - containing pronunciation forms of some words,

accent- or boundary-tags - is processed by the preprocessor stage.
Word, phrase, and sentence boundaries are classified and tagged,
special character combinations are recognized, function words and
abbreviations are detected and marked in the running text.

Figure 1. Processing stages in DreSS.

• The Grapheme-to-Phoneme stage derives a phonemic
representation of the input text. Processing is done first by a
lexicon-based and then by a rule based component. Furthermore,
accent type and place are supplied to the following prosodic
components.
• Prosodic processing (duration and intonation control) is done
by several modules, between which the user may choose. The
different approaches, which will be discussed in more detail in the
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following chapters, add segmental durations and pitch
parameters to the stream of phonemic information.
• The unit selection transforms the stream of phonemes into
a sequence of speech units (Diphones) and joins it to the
prosodic information.
• Finally, the acoustic synthesis builds up a synthetic speech
signal from the sequence of Diphones and reproduces the
prosodic parameter contours.

3. THE INTONATION MODELS
3.1. Linear Approach
The linear approach to intonation control is a very simple
production model. It superposes the contributions of
accentuation-based and sentence/phrase-based linear
components to a resulting intonation contour. In Figure 2, a
short example is given.

Parameters like declination, accentuation rise and the
phrase components may be configured by the user.

Figure 2. Intonation control with the linear approach.

3.2. Data Driven (Neural) Approach
To generate flexible speaking styles and to quickly adapt the
DreSS system to the requirements of different voices or
languages – a data driven approach is used. This approach
includes a artificial neural network (ANN) and enables the
direct estimation of the f0 contour from a sequence of linguistic
input vectors. The feature coding is syllable-oriented: From the
phoneme sequence, syllables will be isolated and stepwise
presented to a recurrent network (including a focus syllable and
in each case two syllables for the pre- but also for the post-
context, which means a context frame of C = 5). For each
syllable, a vector of N1 = 8 linguistic and phonetic features is
applied to the network input. The first hidden layer consists of
N2 = 10, the second hidden layer of N3 = 6 neurons. The
second hidden layer is completely connected to the context
neurons, i.e. the ANN input layer contains C*N1+N3=46
neurons. The output layer owns N4 = 3 neurons, which
estimate the f0 contour of the focus syllable. The input encoder
considers the phrase position, stress situation, phonetic features
of the nucleus and its context (see Figure 3).

Figure 3. ANN model for the intonation control. (An analogous
approach for the duration modeling is additionally shown.)

The hierarchical Elman network is trained with an adapted
error-backpropagation algorithm using the distances between the
original f0 contour extracted from the training corpus (PhonDat I
[2] - up to 400 sentences of a single speaker) and the net-generated
f0 contour. Beside the appropriate coding, the network
performance mainly depends on the amount of training utterances
and the choice of the presented examples. The training corpus for
the ANN model used for the presented prosodic evaluation was not
recorded from source speakers of the DreSS voice inventory.
Another study [3] deals with the potentials of matching databases.

3.3. Adaptation of the Fujisaki Model
The third method utilized in DreSS for generating the intonation
applies the well-known Fujisaki model (e.g., [4]). This model
represents the combination of a phrase control mechanism
(controlled by phrase commands) and an accent control mechanism
(controlled by accent commands) according to a mathematical
algorithm. Since this algorithm considers facts from the articulatory
apparatus, the model is suited for different languages. Of course,
the parameters of the model have to be determined for every
language. For German, this was done by one of the authors in [5]
and [6]. Thus, we are able to generate the accent and phrase
information for the Fujisaki model from a given sentence in DreSS.
In this paper, the method is referred to as MFGI (Mixdorff Fujisaki
German Intonation).

4. DURATION CONTROL
The presented evaluation of the prosodic quality mainly examines
the effect of different intonation models on the overall rating of a
TTS system. The control of segmental durations has an essential
influence on the quality of the synthetic speech, too. For the
internal evaluation of several DreSS intonation models - but also
for the standard use of the TTS system - a rule-based duration
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control according to the approach of Klatt [7] is implemented,
because of its robust performance and satisfying mean quality:
Basing on the phonemic word string and the obtained accent
level (0, 1, 2), the duration control generates a duration for each
phoneme using a rule system while modifying inherent and
minimal durations from a given phoneme database.

Other than the phoneme-oriented rule model, a new multi-
level approach [8] supports a global and a local rhythm
variation and follows a top-down strategy including the phrase,
syllabic and phonemic level. The concept allows the alternative
use of rule-based, statistical or data-driven methods on these
levels. The hybrid design enables the flexible use of either a
rule-based duration control or a neural network control (see the
analogous model in Figure 3) on each level. However, this
model was not evaluated in the study presented here.

Summarizing, the generated durations do not differ
significantly among the rule model and the ANN approach on
the phrase and the syllabic levels - as long as the database for
the training and/or the rule adjustment are identical. For the
phonemic level, a statistical model with regard to Campbell’s
elasticity approach (e.g. in [9]) showed the best results.

5. EVALUATION
5.1. Test Material and Persons
To compare the different methods for generating the intonation
on sentence level,  we produced some examples for terminal,
progredient, and interrogative sentence intonation. For the
perception experiment on system level, a continuous text was
selected from news material.

53 listeners had been available. Among them, 21 were
trained (phonetically educated and familiar with synthetic
speech), while the other 32 listeners had no contact to synthetic
speech formerly.

Table 1 gives an overview on the experiments. It is shown that
we performed at first two blocks of experiments where we
compared the different intonation modules in DreSS [10]. A
version of DreSS which showed good quality in these experiments,
was finally compared to other TTS systems and to natural speech in
a third block [11].

5.2. First Experiment: Comparison within DreSS
Because a test of prosodic quality will be only reasonable if the
synthetic speech shows a good basic quality, we tested at first the
intelligibility of the synthetic sentences. All four methods
mentioned in Table 1 produced a sentence intelligibility between
92 and 100 %.

Next, the same sentences were used to determine the
naturalness. The listeners had to perform an absolute category
rating (ACR) in a four step scale. MFGI performed best with a
score of 1.7. The worst score (for NN II) was 2.7. Thus, the
difference between the four methods was only one point.

A third part of this block concerned the perception of accents
in the synthetic sentences. The listeners used a printout of the
sentences to mark by a slash the places where they perceived an
accent. The percentage of these marked accents compared to the
intended accents was calculated. MFGI showed clearly the best
result with a mean of 86.9 %. An overview (mean of all listeners) is
shown in Table 2.

To complete the first block, the naturalness of the three best
approaches was evaluated in a software-supported pair comparison.
A score for the naturalness was calculated as mean of all points
which were collected in all pair comparisons over all listeners.
From this calculation, a scale from 0 to 4 results. Table 3 shows the
results which are confirming the ranking resulting from the
previous listening tests.

1st experiment 2nd experiment 3rd (main) experiment
Comparison DreSS internal different TTS systems
Feature Intelligibility Naturalness

(ACR)
Marking of

accents
Naturalness

(A/B)
Naturalness (A/B) Naturalness

(A/B)
Naturalness
(Ranking)

Compared
methods and
systems

DreSS with following intonation modules:
• MFGI (see 3.3. above)
• Neural network (NN) I (see 3.2. above)
• Neural network II (smaller training set than NN I)
• Linear approach (see 3.1. above)

• MFGI
• NN (modified)
• Linear
• Copy contours
• Copy contours

with natural
durations

• MFGI
• NN (modif.)
• Alien A
• Alien B
• Alien C
• Natural

speech

• MFGI
• NN (modif.)
• Alien A
• Alien B
• Alien C
• Natural

speech
• MFGI with

natural dur.
Test material 72 sentences 72 sentences 72 sentences 14 sentences

(84 pairs)
8 sentences
(125 pairs)

15 sentences
(215 pairs)

3 connected
sentences

Method Opinion test Opinion test Opinion test Pair compar. Pair comparison Pair compar. Ranking
Result Intelligibility

in all methods
nearby 100 %

1. MFGI
2. Linear

approach
3. NN I
4. NN II

1. MFGI
2. Linear

approach
3. NN I
4. NN II

1. MFGI
2. Linear

approach
3. NN I
4. NN II

1. Copy contours/
natural dur.

2. MFGI
3. Copy contours
4. NN (modified)
5. Linear

approach

1. Natural
speech

2. Alien B
3. MFGI
4. Alien C
5. Alien A
6. NN (mod.)

1. Natural sp.
2. MFGI with

natural dur.
3. MFGI
4. Alien C
5. NN (mod.)
6. Alien B
7. Alien A

Table 1. Overview on the perception experiments.
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Table 2: Perception of intended accents.
Method Mean [%] Standard deviation
MFGI 86.9 4.3
Linear approach 67.9 9.5
NN I 57.1 7.3
NN II 49.6 2.9

Table 3: Score of naturalness in pair comparison (Scale 0 ... 4).
Method Mean Standard deviation
MFGI 2.34 0.31
Linear approach 1.59 0.41
NN I 1.45 0.53

5.3. Second Experiment: Comparison to Natural Contours
In another pair comparison, we tried to compare the quality of
the synthetic F0 contours to natural contours. For this purpose,
the contours from natural utterances had been copied to
synthetic stimuli. Additionally, a second set of these stimuli
was equipped with natural durations.

The ranking resulting from these experiments is shown in
the corresponding column of Table 1. Obviously, approaching
natural sound durations leads to an essential improvement. This
means that a good F0 control will be effective only if the
duration control shows comparable quality.

5.4. Third Experiment: Comparison to Other TTS Systems
and to Natural Speech
The purpose of this (main) experiment was to compare DreSS
(equipped with MFGI as the F0 control which worked best in
experiments 1 and 2) to other TTS systems and to natural
speech. For this purpose, utterances from three renowned TTS
systems for German had been produced via web access. The
systems will be called here ‘Alien A, B, C’. Two of them are
PSOLA systems, the third utilizes LPC segments.
The experiment was subdivided in two parts.
The first part was a pair comparison of isolated sentences
analogous to the previous experiments. The results are shown
in Table 4. Of course, there is still a remarkable difference
between natural speech and the best TTS system.

Table 4. Overall rating of the test sentences (scale 0 ... 4).
System Mean Standard dev.
Natural speech 3.35 0.18
Alien B 1.88 0.42
DreSS with MFGI 1.65 0.29
Alien C 1.49 0.49
Alien A 1.48 0.32
DreSS with Neural Network 1.23 0.40

The second part was a system ranking. The aim was to measure
the acceptance of a TTS system at the listener. The pair
comparisons shows that the rating of the naturalness strongly
depends on the sentence used. Furthermore, TTS systems are
generally used for synthesizing connected texts. That’s why, a
connected text from three sentences (from news) was selected
for synthesizing by the systems to be compared. Additionally,
we tested a MFGI version with natural durations. The resulting
ranking was slightly different to that from the pair comparison
and is shown in Table 5.

Table 5. Comparison of TTS systems (scale 0 ... 10).
 System Mean Standard dev.
Natural speech 10.00 0
DreSS with MFGI and natural
durations

6.57 2.02

DreSS with MFGI 5.35 2.60
Alien C 4.83 2.55
DreSS with Neural Network 4.70 2.58
Alien B 4.43 2.69
Alien A 2.65 2.74

6. CONCLUSION
As a result of our evaluation, we found a version of DreSS which
compares well to other leading TTS systems for German. On the
other hand, it proved again that recent TTS systems in general are
far from the quality of natural speech. The improvement of the
duration control seems to be an essential part to further enhance the
quality of DreSS. Readers who are interested in testing DreSS are
referred to our tutorial web pages [12] with the web address
http://www.ias.et.tu-dresden.de/kom/lehre.
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