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ABSTRACT

The article introduces a novel hybrid data driven and rule
based approach for the prosody control in a TTS system,
which combines the advantages of well-balanced, quantitative
models with the flexible training of derived model parameters.
Instancing the training of Fujisaki intonation parameters for
German (MFGI) the article describes the hybrid data driven
and rule based architecture HYDRA, the speech database, the
extraction of the model parameters and the neural network
(NN) training of these parameters. Preliminary results using
the hybrid intonation model are presented. A hybrid neural
network and rule based, quantitative model can be easily
parameterized and adapted e.g. for multilingual applications,
but has a higher complexity and requires the automatic
extraction of the model parameters from a speech database.

1.  INTRODUCTION

The synthesis of near-to-natural prosodic contours is still an
important issue in text-to-speech (TTS). Several studies, such
as [2] prove the strong effect of the synthetic prosody on
naturalness and intelligibility of synthetic speech. Focusing on
the F0 contour and segmental durations the prosody structure
of synthetic speech signals can be parameterized by
established quantitative models. Data driven algorithms for
prosody control enable the simple adjustment of prosodic
parameters via training and the generation of more variable
contours. Nevertheless, a strictly data driven approach using
e.g. a neural network (NN) as in [3] tends to local runaways
and similar irregularities. This contribution introduces a
hybrid neural network and rule based approach, which
combines the advantages of well-balanced, quantitative

models with the flexible training of derived model parameters.
The article starts with an illustration of the hybrid data driven
and rule based prosody model and of the TTS target system
(chapter 2). The 3rd chapter deals with the speech corpora
used for statistical analyses and to extract duration and
intonation parameters. The 4th chapter describes a feed
forward NN for predicting MFGI parameters. Finally,
preliminary results of the hybrid intonation model are
presented.

2.  THE HYBRID DATA DRIVEN AND
RULE BASED PROSODY MODEL

In past a number of established rule based and some data
driven prosody models were developed. Basing on extensive
research work - rule based, quantitative prosody models often
outperform strictly data driven approaches [4] (Listeners
preferred Fujisaki versus NN generated intonation contours.).
Keeping the features of rule based modelling it seems to be
necessary to extend the models by parameter-learning and
“adjusting components”. In [5] a hybrid data driven and rule
based approach for the duration control in the TTS system
DRESS has been presented.

2.1. Approach

The hybrid data driven and rule based architecture (HYDRA)
includes a rule based, quantitative prosody model (the core
component), an automatic extractor for the model parameters,
a data driven algorithm for learning and adjusting the model
parameters and an interface to the according databases
(training time) respectively to the TTS text processor at work
(figure 1).

Figure 1.  Hybrid data driven and rule based architecture (HYDRA) for generating the prosody in a TTS system
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During the training a linguistic-phonetic feature vector is
applied to the input of the data driven module while the output
is predicting the parameter vector for the input of the rule
based module (supervised learning). The parameter vector
may consist of initial times, amplitudes, intensities or similar
signal parameters.

In opposite to other data driven approaches for the prosody
control focusing on “a learning procedure including an output
model” the HYDRA approach is designed as “an output model
extended by a learning procedure”. The approach underlines
the importance of a well-balanced rule based model and limits
the variety of possible outputs. The data driven module acts as
a “controller” and enables the adjustment of mean values,
amplitudes, etc. for new languages, speakers or speaking
styles. The model parameter extractor itself may use a
learning procedure, as well.

2.2. Application in the Text-to-Speech
System DRESS

The hybrid data driven and rule based approach described for
generating the prosody is implemented in the Dresden TTS
system DRESS (Dresden Speech Synthesizer).

DRESS is a time-domain synthesizer (multiphone and syllable
units) with a preprocessing module, diverse lexicons, a
grapheme-phoneme converter, replaceable modules for
duration and intonation control and an acoustic module.
Recent improvements refer to multilinguality and a better
naturalness. Multilingual databases for German, US-English,
Russian, Italian, Czech and Chinese have been collected and
connected to DRESS.

Processing a rule-based generated phoneme sequence -
enriched with tagged and classified accents, syllables, words,
phrases and sentences – DRESS offers 3 alternative duration
models (rule based, NN [6], m-level [5]) and 3 intonation
models (linear, NN [6], MFGI [1]).

The HYDRA concept applied to the MFGI model results in a
novel combined NN-MFGI intonation model described in 4.1.

3.  SPEECH DATABASE

The database used in this study is part of a German speech
corpus compiled by the Institute of Natural Language
Processing at the University of Stuttgart [7]. It consists of 72
broadcasting news stories read by a male speaker. The total
recording time includes 48 minutes of speech containing
13151 syllables. The corpus contains boundary labels for
phones, syllables and words as well as ToBI-labels following
the Stuttgart System [8].

Additionally, a Dresden database containing fairy tales (5043
syllables, male and female speaker) will be extended
according to the Stuttgart conventions to supply validation
data for the created hybrid models and to allows the training
of different speaking styles.

4.  NN-PREDICTOR FOR THE MFGI-
FUJISAKI PARAMETERS

Following the HYDRA approach a NN predictor for the
Mixdorff-Fujisaki German Intonation (MFGI [1]) model
parameters can be created.

The necessary, initial extractor of the MFGI parameters is
explained in [9]: A given F0 contour is approximated by
quadratic splines. The resulting, stylized F0 contour is high-
pass filtered (HF contour) and subtracted from the spline
contour (LF contour). The overall minimum of the LF contour
is initially set to Fb. By searching local extreme values the
parameters T0, Ap, T1, T2 and Aa can be initialized. Iterative,
the overall mean-square error is minimized using the
Analysis-by-Synthesis procedure. The extractor produces
reliable results (See also table 1 in chapter 5).

4.1 Method

Figure 2.   FFNN-MFGI-Predictor:  Estimating the intonation
model parameters for each input syllable

The MFGI parameters previously extracted are the teaching
input for two fully-connected feed-forward NN (FFNN). The
first FFNN is predicting the accent command (T1,T2, Aa) -
the second one the possible phrase command (T0, Ap) - for
the respective syllable (figure 2). In case of an active accent
flag or a phrase-start flag a vector of 14 features describing
the prosodic context of the syllable (phrase and sentence
position, accent position and strength, onset duration, etc.) is
applied to the FFNN input layer. The syllable sequence of the
output vectors (T1, T2, Aa) and (T0, Ap) provides the
parameter set for the MFGI model. Considering a single
phrase α, β and Fb are given by an additional input channel
(mean value assumption). According to the Fujisaki approach
[1] the resulting, separate accent and phrase commands are
super-positioned.
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4.2 NN-Training

The Stuttgart corpus was subdivided into three sets containing
training sample (5000 syllables), test sample (5000 syllables)
and validation sample (3151 syllables). Considering the
mentioned flags for accent or phrase commands the final
learning and testing sets are only subsets of those samples
(e.g. accent command patterns: 1165, phrase command
patterns: 522 in the training sample). The patterns are trained
using Error-Backpropagation and minimizing the Root Mean
Square Error (RMSE) between the teaching sequence of
parameters (using the MFGI extractor) and the FFNN
predicted parameter sequence.

The FFNN training is carried out using the training sample.
The test sample’s RMSE defines the stop criterion (avoiding
over-adaptation) and the validation sample enables an
independent evaluation.

5. PRELIMINARY RESULTS

For a first evaluation of the introduced NN-MFGI predictor
for the German intonation a few observations and
measurements are presented in the following chapter. Figure 3
shows the differences between the extracted (“parameterized”)
and the NN predicted phrase respectively accent commands
according to the MFGI model (typical example). The NN
seems to learn the basic concept of the MFGI model but
partially produces higher differences to the teaching input
(e.g. timing and amplitudes of the 2nd  phrase command).
Considering the ambiguity of the Fujisaki model (different
parameter sets may produce a similar F0 output contour) the
NN-MFGI predictor, nevertheless, generates proper overall
results.

Figure 3.   Extracted vs. predicted MFGI-model parameters (test sample). Top: phrase commands. Bottom: accent commands.
Text: “Darin sind unter anderem kürzere Arbeitszeiten, flexiblere Tarifverträge und längere Maschinenlaufzeiten vorgesehen.”

Table 1 summarizes the RMSE observed between the
measured (“original”) F0 contour, the MFGI-extracted and
reconstructed contour and the NN-MFGI predicted contour.
Considering the same sample (e.g. the test sample) the
extracted and reconstructed contour obviously has a smaller
RMSE of 14.2 Hz than the NN predicted contour (RMSE=17.8
Hz). May a student better perform than his teacher? In fact,
the NN predictor matches the original contour better than its
teaching input (RMSE=17.8 Hz vs. RMSE=19.2 Hz).
Probably, the NN detects some contradictions in the extractor
method or in the database and generalizes in such cases.

F0 Contour  Set RMSE [Hz]
(Training)

RMSE [Hz]
(Test)

RMSE [Hz]
(Validation)

MFGI vs. original 16.7 14.2 12.8
NN vs. original 20.3 17.8 18.6
NN vs. MFGI 21.3 19.2 20.7

Table 1.   RMSE of different F0 contour sets

Figures 4 and 5 present typical constellations of the test
sample. The NN predicted F0 contour fits the global shape
given by the original respectively the MFGI-reconstructed
(“parameterized”) contour fairly well. Local differences occur
for stronger accents. The results for the training set and the
validation set are similar. In particular, for learning the correct
accent timing more input features are necessary.

The re-synthesis with the NN predicted contours versus the
MFGI generated shows the applicability of the proposed
method.
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Figure 4.   F0 contours basing on measured, extracted MFGI parameters and NN predicted MFGI parameters. Utterance: “Darin
sind unter anderem kürzere Arbeitszeiten, flexiblere Tarifverträge und längere Maschinenlaufzeiten vorgesehen.”

Figure 5.   F0 contours basing on measured, extracted MFGI parameters and NN-predicted MFGI parameters. Utterance: “Ein
kroatischer Regierungsbeamter wies ebenfalls darauf hin, daß die Beratungen lediglich ausgesetzt seien.”

6. CONCLUSION

The proposed hybrid data driven and rule based approach
(HYDRA) and its example for the NN prediction of MFGI
parameters is a practicable solution to combine a good model
performance with self-learning components. Further studies
are required to improve the components of HYDRA, e.g.:

- the parameter extraction method

- the learning algorithm

- the database and the linguistic-phonetic feature vector
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