
Application of Recognition Techniques for Mandarin Syllables
 to German Alphabet Recognition

♦Hansjörg Mixdorff, ♣Yuan-Fu Liao and ♣Sin-Horng Chen

♦Institut für Technische Akustik und Sprachkommunikation, TU Dresden,
Mommsenstraße 13, 01062 Dresden
E-mail: h.mixdorff@teles.de

♣Department of Communication Engineering, National Chiao Tung University,
1001 Ta Hsueh Rd., Hsinchu 300, Taiwan, Republic of China
E-mail: u8213803@cc.nctu.edu.tw

Abstract: Robust speaker-independent alphabet recognition over a telephone line is a task yet
unsolved. The current study examines the feasibility of Modular Recurrent Neural Networks
(MRNNs) successfully applied to Mandarin syllable recognition to the recognition of German letters.
Letters were divided into sub-word units for each of which specialized RNNs were trained. The
results presented in this paper show that, within the framework of MRNNs, the highest recognition
rates can be achieved by segmenting letters into right context-dependent initials and context-
independent finals. However, these rates are lower than those achieved with comparable HMMs,
primarily due to the higher robustness against segmentation inaccuracies of the latter approach.

1. Introduction

In quite a number of applications of speech recognition, such as automated telephone directories,
alphabet recognition is required. This task, however, is far from being solved due to the similarities
between the phonetic representations of German letters. These fall into a few sets:

(1) the [a:]-set: A [?a:], H [ha:], K [ka:]
(2) the [e:]-set: B [be:], C [tse:], D [de:], E [?e:], G [ge:], P [pe:], T[te:], W [ve:]
(3) the [u:]-set: Q [ku:], U [?u:]
(4) the [E]-set: F [?Ef], L [?El], M [?Em], N [?En], R [?ER], S [?Es]
(5) Others: I [?i:], J [jOt], O [?o:], V [faU], X [Iks], Y [?YpsIlOn], Z [tsEt], Ä [?E:], Ö,[?2:] Ü,[?y:], ß

[?EstsEt]

Considering the statistical distribution of German letters, over 80% of letters in an average text fall into
the highly confusable groups (1), (2) and (4). The five sets can be further grouped into three broad
classes, i.e. the (C)+V (set 1, 2 and 3), V+(C) (set 4) and others (set 5).
Structurally, the letter recognition task resembles the Mandarin syllable recognition task. Phonetically,
many of the syllables of Mandarin exhibit (C)+V or V+(C) structures, which are, except for lexical
tone, only distinguished by the initial or final consonant. Hence, the current study examines whether
recognition strategies for the highly confusable Mandarin Chinese syllables can be successfully applied
to letter recognition, with special emphasis on the application of Modular Recurrent Neural Networks
(MRNN)[1]. It has been shown in earlier works on German that Modular Neural Networks can be
useful for subdividing specific recognition tasks [2].

2. Database, Recognition Features and Modeling Units

The database used in the current study is the German Telekom “Zifkom” corpus containing recordings
of all German letters uttered in isolation once by 100 male and 100 female speakers. The data was
down-sampled to 8 kHz to simulate telephone conditions. 12 melcepstral coefficients (MFCCs), 12
delta-MFCCs and 12 delta-delta-MFCCs, one delta-energy and one delta-delta-energy factor were
determined for frames of 32 ms at a delay of 10 ms. 80% (160 speakers, 4800 utterances) and 20% (40
speakers, 1200 utterances) of the data was used for training and testing, respectively.



Table 1. Table showing the sub-word unit coding for (b) 12 context-independent (CI) -initial and
20 CI-final sub-word models, (c) 22 right-final-dependent (RCD) initial and 20 CI final sub-word
models and (d) 12 CI-initial, 13 CI-vowel and 11 CI-final sub-word models, and broad class-
assignment.

letter SAMPA
sub-word unit

codes (b)
initial       final

sub-word unit
codes (c)

initial      final

sub-word unit
codes (d)

initial      vowel      final
broad
class

A [?a:] 1 1 1 1 1 1 1 1
B [be:] 4 2 2 2 4 2 2 1
C [tse:] 3 2 3 2 3 2 1 1
D [de:] 5 2 4 2 5 2 1 1
E [?e:] 1 2 5 2 1 2 1 1
F [?Ef] 1 4 6 4 1 4 3 2
G [ge:] 6 2 7 2 6 2 1 1
H [ha:] 7 1 8 1 7 1 1 1
I [?i:] 1 5 9 5 1 5 1 3
J [yOt] 8 6 10 6 8 6 2 3
K [ka:] 2 1 11 1 2 1 1 1
L [?El] 1 7 6 7 1 4 4 2
M [?Em] 1 8 6 8 1 4 5 2
N [?En] 1 9 6 9 1 4 6 2
O [?o:] 11 10 12 10 1 7 1 3
P [pe:] 9 2 13 2 9 2 1 1
Q [ku:] 2 3 14 3 2 3 1 1
R [?ER] 1 11 6 11 1 4 7 2
S [?Es] 1 12 6 12 1 4 8 2
T [te:] 12 2 15 2 12 2 1 1
U [?u:] 1 3 16 3 1 3 1 1
V [faU] 10 13 17 13 10 8 1 3
W [ve:] 11 2 18 2 11 2 1 1
X [?Iks] 1 14 19 14 1 9 9 3
Y [?IpsilOn] 1 15 19 15 1 10 10 3
Z [tsEt] 3 16 20 16 3 4 2 3
Ä [?E:] 1 17 6 17 1 11 1 3
Ö [?2:] 1 18 21 18 1 12 1 3
Ü [?y:] 1 19 22 19 1 13 1 3
ß [?EstsEt] 1 20 6 20 1 4 11 3

Four sets of modeling units were tested. They include (a) 30 full-word-models, (b) 12 context-
independent (CI)-initial and 20 CI-final sub-word models, (c) 22 right-final-dependent (RCD)-initial
and 20 CI-final sub-word models and (d) 12 CI-initial, 13 CI-vowel and 11 CI-final sub-word models.
The inventories of the latter three sets are listed in Table 1.

3. Simulations

3.1 Single RNN

As a baseline system, a single recurrent neural network (RNN) was trained with full-word samples. The
RNN consists of three layers, an input layer, a hidden layer and an output layer. The outputs from the
hidden layer are fed back to the input layer as additional inputs (see Figure 1).  Different numbers of
hidden layer nodes were tested. A number of 90 hidden nodes proved to be optimal (see Table 2).



Figure 1. The structure of a Recurrent Neural Network (RNN).

Table 2. Overall recognition rates, single RNN.

Number of hidden nodes 30 90
Inside recognition rate (%) 96.16 98.18
Outside recognition rate (%) 86.78 91.38

Table 3. Letter-dependent outside recognition rate for a single RNN (90 hidden nodes), relative
letter frequency and confused counterparts.

Letter Rate (%) Relative
frequency (%)

mostly confused with

A 85.00 6.94 H
B 82.50 1.61 D
C 92.50 2.98 D
D 90.00 6.38 B
E 80.00 16.83 G, P
F 82.50 0.91 S
G 77.50 2.76 D, T, E
H 92.50 4.22 K
I 92.31 7.34
J 97.50 0.33
K 95.00 0.83 H, A
L 97.50 4.03 Ö, R
M 85.00 2.01 N, L
N 85.00 10.11 M, L
O 92.50 2.47
P 95.00 0.78 B
Q 100.00 0.06
R 90.00 7.27 L
S 77.50 7.55 F, L
T 92.50 6.26 C, P
U 95.00 4.93 Q
V 95.00 0.92
W 90.00 1.32 B, D
X 100.00 0.09
Y 100.00 <0.01
Z 95.00 1.08
Ä 92.50 <0.01 R, F
Ö 97.44 <0.01
Ü 94.88 <0.01 Ö
ß 100.00 <0.01



One must, however, consider, that recognition performance varies depending on the particular letter.
Table 3 displays the outside recognition rate for all letters for the case of 90 hidden nodes. The second
column from the right lists the relative frequency of a particular letter taken from [3].
The right column of Table 3 lists counterparts with which a particular letter is likely to be confused. It
becomes obvious, that letters belonging to the same set are most prone to confusion. Confusion
concerns place of articulation (labial voiced stop B and alveolar voiced stop D, for instance), manner of
articulation (voiceless fricative H and voiceless stop K) and presence or absence of voicing (voiceless
labial stop P and voiced labial stop B). These cases of confusion roughly correspond to those observed
with humans listeners.

3.2 HMM-based approaches

The application of Modular Neural Networks (MRNNs) requires the segmentation of every letter into
sub-word units,  i.e. initial and final parts, for instance. This segmentation is achieved by training
HMMs with topologies corresponding to the sub-word-modeling units chosen. Besides, the HMMs
created in this process can be used as a reference for the performance of the resulting MRNNs.

According to the four sets of modeling units, four HMM topologies using simple left-to-right state
diagrams are tested. They include (a) 30 8-state word models, (b) 12 3-state-initial and 20 5-state-final
sub-word models, (c) 22 3-state-initial and 20 5-state-final sub-word models, and (d) 12 2-state-initial,
13 4-state-vowel and 11 2-state-final sub-word models, respectively. In addition, two silence states are
used to model and segment the silence parts before and after each letter.

In order to determine sub-word boundaries, minimum distortion segmentation [4] is
used to guess possible segmentation positions for each training syllable. A vector
quantization procedure is applied to generate the first sets of initial and final HMM models according
to the segmentation information. Then the HMM models are concatenated to form the first set of
30 syllable- (8 state-) HMM models. They are further fine-tuned by the segmental K-mean (re-
segment-then-re-estimate) algorithms based on the maximum likelihood (ML) criterion.
Finally, those well-trained syllable HMM models are used to give more accurate segmentation
positions for each training syllable, especially the segment boundary location between initial and final
part. Using this segmentation information separate RNNs for initial and final part of the letter can be
trained.
Following the results of a preliminary simulation, a mixture Gaussian distribution function with 15
Gaussian components was chosen for all HMM models. The simulation results are listed in Table 4.
The best Top-1 and Top-5 recognition rates achieved are 94.2% and 100.0% using 22 RCD initial and
20 CI final HMMs. In a second step, the MCE/GPD algorithms were used to fine-tuned the above ML-
trained HMMs. The simulation results are listed in Table 5. Although the Top-1 recognition rates are
almost the same as with ML-trained HMMs, the Top-N recognition rates are improved.

Table 4. The alphabet recognition results of the four HMM-based approaches using the ML
training algorithms.

Recognition rate (%)
HMM topology

Top-1 Top-2 Top-3 Top-4 Top-5
12 initials/13 vowel/11 finals 86.7 94.8 99.0 99.6 99.6
12 initials/20 finals 91.8 97.8 99.6 99.7 99.8
22 initials/20 finals 94.2 99.2 99.9 99.9 100.0
30 words 92.5 97.9 99.4 99.5 99.7

Table 5. The alphabet recognition results of the three best HMM-based approaches using the
MCE/GPD training algorithms.

Recognition rate (%)
HMM topology

Top-1 Top-2 Top-3 Top-4 Top-5
12 initials/20 finals 90.8 98.1 99.7 99.7 99.9
22 initials/20 finals 94.2 99.2 100.0 100.0 100.0
30 words 92.6 98.0 99.4 99.6 99.8



3.3 MRNN-Based Approaches

3.3.1 MRNN with 22 RCD Initials and 20 CI Finals

According to the results of the HMM method, an MRNN-structure using 22 RCD-initials and 20 CI-
finals like the best HMM topology was created. Figure 2 shows the block diagram of the MRNN. The
MRNN has three constitute RNNs, i.e. the initial, final and weighting RNN. The initial and final RNNs
are used to classify initials, finals and generate 42 partial discriminant functions. The weighting RNN is
used to generate three dynamic weighting functions for initial, final and silence segments. The

Figure 2: Block diagram of MRNN with 22 RCD Initials and 20 CI Finals.

function of the latter is to suppress the silence parts before and after each utterance. In the Discriminant
Function Accumulator the 42 partial discriminant functions are integrated into 30 letter discriminant
functions.

In the testing phase, a discriminant function is defined for each letter. For the p-th letter, which is
composed of the i-th RCD-initial, and the j-th final, the discriminant function can be expressed as
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produced by the weighting RNN, where c (c=1 or c=1~3) is the broad class of the letter. The final
decision rule then chooses the best candidate letter according to the maximum discriminant function.

In the training phase, each input utterance is first segmented into initial/final/silence parts using the
HMM method. The initial and final RNNs are thus independently trained using the sub-word-level
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MCE/GPD algorithms according to the segmentation positions given by the HMM method. The
weighting RNN is also independently trained by the conventional back-propagation through time
(BPTT) algorithms using the same segmentation positions and the “0-1” target function. After the three
RNNs are well trained, they are combined into the MRNN alphabet recognizer and further fine-tuned
by the word-level MCE/GPD algorithms according to the discrimant function defined in Equation 1.

Several sets of the segmentation positions generated by the different HMM topologies are tested. The
purpose is to find a more consistent and suitable initial/final segmentation scheme, as many HMMs,
though consisting of one initial and one final model, do not share their sub-word models. They are
essentially word models. The HMMs thus tend to find an optimal word model but not optimal
initial/final segmentation. In all tests, 90 hidden neurons are used in initial and final RNNs, and 30
hidden neurons in the weighting RNN. According to different segmentation schemes, several sets of the
initial/final and letter recognition rates achieved are listed in Table 6. As can be seen the results are
poorer than those from the HMM methods.

The behavior of the MRNN is illustrated in Figure 4 on the example of the letter W [ve:]. The figure
displays from top to bottom: The speech wave form, the spectrum, frame energy and zero crossing rate,
the output of the weighting RNN, initial and final RNNs. It can be seen that the response of the initial
RNN reaches its maximum before the inter-phone boundary, whereas the final RNN is activated shortly
after.

Table 6. The partial recognition results of the initial and final RNNs,  and the letter recognition
result of the MRNN.

Recognition rates (%)
Segmentation schemes

22 initials 20 finals 30 letters
12 initials/20 finals 92.1 93.7 91.0
22 initials/20 finals 95.1 93.2 92.5
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Figure 3. A recognition example of the letter W [ve:]. From top to bottom: The speech wave
form, the spectrum, energy and zero crossing rate, output of the weighting RNN, initial and final
RNNs.



3.3.2 MRNN with 12 CI-initials, 13 CI-vowels and 11 CI-finals

Although the performance of the HMM scheme using 12 initial, 13 vowel and 11 final sub-word
models was relatively poorly, we are still interested in this scheme, since we have so far not used an
RNN for segmenting a syllable into initial/vowel/final parts. Furthermore, all HMMs in this scheme
have been forced to share their sub-word models. They are therefore not independent and may produce
better segmentation positions for MRNN-based approaches. The block diagram of the resulting MRNN
is shown in Figure 4. Preliminary results for the initial/vowel and final RNNs are listed in Table 9.

Figure 4. Block diagram of MRNN with 12 CI-initials, 13 CI-vowels and 11 CI-finals.

Table 9. The recognition results for the initial, vowel, final discrimination RNNs.

Recognition rates (%)
Segmentation schemes

12 initials 13 vowels 11 finals

12 initials/13 vowels/
11 finals

93.2 96.7 85.5

4. Discussion and Conclusions

All structures of MRNNs examined in the current study are outperformed by the corresponding HMMs.
Overall recognition rates compare to those achieved in an earlier study [5].
Case analysis reveals that most errors are due to failures in the endpoint detection, which tends to leave
small segments of silence within the word boundaries. Therefore, the first and last states of the HMMs
are polluted with silence and sometimes act as additional silence states, yielding widened word
boundaries. The initial/final/silence states of the HMMs are therefore often mal-aligned, as the HMMs
are trained using the ML algorithms, which only considers the within-class training. And many word
models used, although made up of two sub-word models, do not share their sub-word models. As a
consequence, the models may not optimally segment an input utterance into the initial/final/silence
parts.
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Figure 5. An example of erroneous endpoint detection (letter B [be:]). From top to bottom: The
speech wave form, the spectrum, energy and zero crossing rate, output of the weighting RNN,
initial and  final RNNs. The  final RNN reaches its output maximum late during the vowel [e:],
the final-RNN output is active until well after the offset of the speech signal.

Since the MRNNs rely on  the boundary positions produced by the HMMS, as a starting point and are
trained with the competitive training algorithm, they are very sensitive to those segmentation errors.
Hence mal-aligned boundaries will misguide and confuse the weighting, initial and final RNNs in the
parallel training phase. The MRNN then are not able to recover from those errors in the following fine-
tuning phase.

In the case of isolated Mandarin syllable recognition,  the problem of segmentation errors does not
occur, because the endpoint detection is more reliable for the (C)+V structure. Independent word
models do not exist, as the 411 syllables are recognized using shared initial and final models which are
forced to align with the true initial/final segments. Thus a better segmentation algorithm is needed for
more successfully implementing the MRNN for German alphabet recognition.
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